bart-large-cnn-xsum / README.md
ckandrew04's picture
Training done for bart-large-cnn
65a7815 verified
metadata
library_name: transformers
license: mit
base_model: facebook/bart-large-cnn
tags:
  - generated_from_trainer
datasets:
  - xsum
model-index:
  - name: bart-large-cnn-xsum
    results: []

bart-large-cnn-xsum

This model is a fine-tuned version of facebook/bart-large-cnn on the xsum dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0314

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
1.9458 0.3921 500 1.8663
1.7833 0.7842 1000 1.9308
1.3364 1.1762 1500 1.9378
1.3562 1.5683 2000 1.9538
1.3173 1.9604 2500 1.8672
0.9227 2.3525 3000 2.0590
0.8619 2.7446 3500 2.0314

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3