whisper-tiny-tr / README.md
ckandemir's picture
Upload tokenizer
cd1e71f verified
|
raw
history blame
2.15 kB
metadata
language:
  - tr
license: apache-2.0
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
base_model: openai/whisper-tiny
model-index:
  - name: Whisper Tiny Tr - Canberk Kandemir
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: tr
          split: None
          args: 'config: tr, split: test'
        metrics:
          - type: wer
            value: 65.19764801769809
            name: Wer

Whisper Tiny Tr - Canberk Kandemir

This model is a fine-tuned version of openai/whisper-tiny on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5050
  • Wer: 65.1976

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.373 0.89 1000 0.5859 60.4296
0.2174 1.77 2000 0.5236 49.7332
0.1194 2.66 3000 0.5080 61.9743
0.0832 3.54 4000 0.5050 65.1976

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.2