whisper-small-wolof / README.md
cifope's picture
Upload WhisperForConditionalGeneration
8874b3a verified
|
raw
history blame
1.91 kB
metadata
base_model: openai/whisper-small
datasets:
  - fleurs
license: apache-2.0
metrics:
  - wer
tags:
  - generated_from_trainer
model-index:
  - name: whisper-small-wolof
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: fleurs
          type: fleurs
          config: wo_sn
          split: test
          args: wo_sn
        metrics:
          - type: wer
            value: 0.9217902350813744
            name: Wer

whisper-small-wolof

This model is a fine-tuned version of openai/whisper-small on the fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8726
  • Wer: 0.9218

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
4.5232 0.9790 35 3.5807 1.3809
3.7127 1.9860 71 2.4567 1.1817
2.2111 2.9371 105 1.8726 0.9218

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1