chrisvinsen's picture
Update README.md
976e9ae
|
raw
history blame
2.56 kB
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-19
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-19
WER 0.283
WER 0.126 with 3-Gram
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6305
- Wer: 0.4499
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 800
- num_epochs: 60
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.4816 | 2.74 | 400 | 1.0717 | 0.8927 |
| 0.751 | 5.48 | 800 | 0.7155 | 0.7533 |
| 0.517 | 8.22 | 1200 | 0.7039 | 0.6675 |
| 0.3988 | 10.96 | 1600 | 0.5935 | 0.6149 |
| 0.3179 | 13.7 | 2000 | 0.6477 | 0.5999 |
| 0.2755 | 16.44 | 2400 | 0.5549 | 0.5798 |
| 0.2343 | 19.18 | 2800 | 0.6626 | 0.5798 |
| 0.2103 | 21.92 | 3200 | 0.6488 | 0.5674 |
| 0.1877 | 24.66 | 3600 | 0.5874 | 0.5339 |
| 0.1719 | 27.4 | 4000 | 0.6354 | 0.5389 |
| 0.1603 | 30.14 | 4400 | 0.6612 | 0.5210 |
| 0.1401 | 32.88 | 4800 | 0.6676 | 0.5131 |
| 0.1286 | 35.62 | 5200 | 0.6366 | 0.5075 |
| 0.1159 | 38.36 | 5600 | 0.6064 | 0.4977 |
| 0.1084 | 41.1 | 6000 | 0.6530 | 0.4835 |
| 0.0974 | 43.84 | 6400 | 0.6118 | 0.4853 |
| 0.0879 | 46.58 | 6800 | 0.6316 | 0.4770 |
| 0.0815 | 49.32 | 7200 | 0.6125 | 0.4664 |
| 0.0708 | 52.05 | 7600 | 0.6449 | 0.4683 |
| 0.0651 | 54.79 | 8000 | 0.6068 | 0.4571 |
| 0.0555 | 57.53 | 8400 | 0.6305 | 0.4499 |
### Framework versions
- Transformers 4.19.2
- Pytorch 1.11.0+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1