leaderboard-pr-bot commited on
Commit
d26ee25
·
verified ·
1 Parent(s): e4c3153

Adding Evaluation Results

Browse files

This is an automated PR created with https://huggingface.co/spaces/Weyaxi/open-llm-leaderboard-results-pr

The purpose of this PR is to add evaluation results from the Open LLM Leaderboard to your model card.

If you encounter any issues, please report them to https://huggingface.co/spaces/Weyaxi/open-llm-leaderboard-results-pr/discussions

Files changed (1) hide show
  1. README.md +118 -1
README.md CHANGED
@@ -1,12 +1,115 @@
1
  ---
2
- license: cc-by-2.0
3
  language:
4
  - en
 
5
  tags:
6
  - finance
7
  - legal
8
  - biology
9
  - art
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  ---
11
 
12
  Behold, one of the first fine-tunes of Mistral's 7B 0.2 Base model. SatoshiN is trained on 4 epochs 2e-4 learning rate (cosine) of a diverse custom data-set, combined with a polishing round of that same data-set at a 1e-4 linear learning rate.
@@ -17,3 +120,17 @@ SatoshiN | Base-Model
17
  Wikitext Perplexity: 6.27 | 5.4
18
 
19
  **Similar to SOTA, this model runs a bit hot, try using lower temperatures below .5 if experiencing any nonsense)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
 
2
  language:
3
  - en
4
+ license: cc-by-2.0
5
  tags:
6
  - finance
7
  - legal
8
  - biology
9
  - art
10
+ model-index:
11
+ - name: SatoshiNv5
12
+ results:
13
+ - task:
14
+ type: text-generation
15
+ name: Text Generation
16
+ dataset:
17
+ name: AI2 Reasoning Challenge (25-Shot)
18
+ type: ai2_arc
19
+ config: ARC-Challenge
20
+ split: test
21
+ args:
22
+ num_few_shot: 25
23
+ metrics:
24
+ - type: acc_norm
25
+ value: 60.49
26
+ name: normalized accuracy
27
+ source:
28
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=chrischain/SatoshiNv5
29
+ name: Open LLM Leaderboard
30
+ - task:
31
+ type: text-generation
32
+ name: Text Generation
33
+ dataset:
34
+ name: HellaSwag (10-Shot)
35
+ type: hellaswag
36
+ split: validation
37
+ args:
38
+ num_few_shot: 10
39
+ metrics:
40
+ - type: acc_norm
41
+ value: 82.94
42
+ name: normalized accuracy
43
+ source:
44
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=chrischain/SatoshiNv5
45
+ name: Open LLM Leaderboard
46
+ - task:
47
+ type: text-generation
48
+ name: Text Generation
49
+ dataset:
50
+ name: MMLU (5-Shot)
51
+ type: cais/mmlu
52
+ config: all
53
+ split: test
54
+ args:
55
+ num_few_shot: 5
56
+ metrics:
57
+ - type: acc
58
+ value: 63.42
59
+ name: accuracy
60
+ source:
61
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=chrischain/SatoshiNv5
62
+ name: Open LLM Leaderboard
63
+ - task:
64
+ type: text-generation
65
+ name: Text Generation
66
+ dataset:
67
+ name: TruthfulQA (0-shot)
68
+ type: truthful_qa
69
+ config: multiple_choice
70
+ split: validation
71
+ args:
72
+ num_few_shot: 0
73
+ metrics:
74
+ - type: mc2
75
+ value: 41.8
76
+ source:
77
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=chrischain/SatoshiNv5
78
+ name: Open LLM Leaderboard
79
+ - task:
80
+ type: text-generation
81
+ name: Text Generation
82
+ dataset:
83
+ name: Winogrande (5-shot)
84
+ type: winogrande
85
+ config: winogrande_xl
86
+ split: validation
87
+ args:
88
+ num_few_shot: 5
89
+ metrics:
90
+ - type: acc
91
+ value: 78.69
92
+ name: accuracy
93
+ source:
94
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=chrischain/SatoshiNv5
95
+ name: Open LLM Leaderboard
96
+ - task:
97
+ type: text-generation
98
+ name: Text Generation
99
+ dataset:
100
+ name: GSM8k (5-shot)
101
+ type: gsm8k
102
+ config: main
103
+ split: test
104
+ args:
105
+ num_few_shot: 5
106
+ metrics:
107
+ - type: acc
108
+ value: 34.72
109
+ name: accuracy
110
+ source:
111
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=chrischain/SatoshiNv5
112
+ name: Open LLM Leaderboard
113
  ---
114
 
115
  Behold, one of the first fine-tunes of Mistral's 7B 0.2 Base model. SatoshiN is trained on 4 epochs 2e-4 learning rate (cosine) of a diverse custom data-set, combined with a polishing round of that same data-set at a 1e-4 linear learning rate.
 
120
  Wikitext Perplexity: 6.27 | 5.4
121
 
122
  **Similar to SOTA, this model runs a bit hot, try using lower temperatures below .5 if experiencing any nonsense)
123
+
124
+ # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
125
+ Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_chrischain__SatoshiNv5)
126
+
127
+ | Metric |Value|
128
+ |---------------------------------|----:|
129
+ |Avg. |60.34|
130
+ |AI2 Reasoning Challenge (25-Shot)|60.49|
131
+ |HellaSwag (10-Shot) |82.94|
132
+ |MMLU (5-Shot) |63.42|
133
+ |TruthfulQA (0-shot) |41.80|
134
+ |Winogrande (5-shot) |78.69|
135
+ |GSM8k (5-shot) |34.72|
136
+