choiruzzia's picture
Training fold 4
04c23ec verified
metadata
license: mit
base_model: ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: 22best_berita_bert_model_fold_4
    results: []

Visualize in Weights & Biases

22best_berita_bert_model_fold_4

This model is a fine-tuned version of ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1396
  • Accuracy: 0.8057
  • Precision: 0.8138
  • Recall: 0.7996
  • F1: 0.7924

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 1.0 106 0.6557 0.7678 0.7861 0.7624 0.7495
No log 2.0 212 0.6617 0.7536 0.7876 0.7501 0.7503
No log 3.0 318 1.0532 0.7915 0.7915 0.7884 0.7810
No log 4.0 424 1.2506 0.7678 0.7711 0.7673 0.7570
0.4542 5.0 530 1.1396 0.8057 0.8138 0.7996 0.7924
0.4542 6.0 636 1.3945 0.7962 0.7889 0.7917 0.7876
0.4542 7.0 742 1.4381 0.7962 0.7920 0.7910 0.7852
0.4542 8.0 848 1.4871 0.7962 0.7899 0.7920 0.7867
0.4542 9.0 954 1.5004 0.7962 0.7899 0.7920 0.7867
0.0149 10.0 1060 1.5096 0.7962 0.7899 0.7920 0.7867

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1