metadata
library_name: stable-baselines3
tags:
- PandaReachDense-v3
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: SAC
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: PandaReachDense-v3
type: PandaReachDense-v3
metrics:
- type: mean_reward
value: '-0.25 +/- 0.11'
name: mean_reward
verified: false
SAC Agent playing PandaReachDense-v3
This is a trained model of a SAC agent playing PandaReachDense-v3 using the stable-baselines3 library.
Usage (with Stable-baselines3)
Copy the code:
from stable_baselines3 import SAC
model = SAC("MultiInputPolicy", env, learning_rate = 0.00073, gamma = 0.98, gradient_steps = 64, verbose=1)
model.learn(5_000)