test_ner3 / README.md
chintagunta85's picture
update model card README.md
76be0e0
|
raw
history blame
3.79 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - pv_dataset
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: test_ner3
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: pv_dataset
          type: pv_dataset
          config: PVDatasetCorpus
          split: train
          args: PVDatasetCorpus
        metrics:
          - name: Precision
            type: precision
            value: 0.6698151950718686
          - name: Recall
            type: recall
            value: 0.6499117663801446
          - name: F1
            type: f1
            value: 0.6597133941985438
          - name: Accuracy
            type: accuracy
            value: 0.9606609586670052

test_ner3

This model is a fine-tuned version of distilbert-base-uncased on the pv_dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2983
  • Precision: 0.6698
  • Recall: 0.6499
  • F1: 0.6597
  • Accuracy: 0.9607

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1106 1.0 1813 0.1128 0.6050 0.5949 0.5999 0.9565
0.0705 2.0 3626 0.1190 0.6279 0.6122 0.6200 0.9585
0.0433 3.0 5439 0.1458 0.6342 0.5983 0.6157 0.9574
0.0301 4.0 7252 0.1453 0.6305 0.6818 0.6552 0.9594
0.0196 5.0 9065 0.1672 0.6358 0.6871 0.6605 0.9594
0.0133 6.0 10878 0.1931 0.6427 0.6138 0.6279 0.9587
0.0104 7.0 12691 0.1948 0.6657 0.6511 0.6583 0.9607
0.0081 8.0 14504 0.2243 0.6341 0.6574 0.6455 0.9586
0.0054 9.0 16317 0.2432 0.6547 0.6318 0.6431 0.9588
0.0041 10.0 18130 0.2422 0.6717 0.6397 0.6553 0.9605
0.0041 11.0 19943 0.2415 0.6571 0.6420 0.6495 0.9601
0.0027 12.0 21756 0.2567 0.6560 0.6590 0.6575 0.9601
0.0023 13.0 23569 0.2609 0.6640 0.6495 0.6566 0.9606
0.002 14.0 25382 0.2710 0.6542 0.6670 0.6606 0.9598
0.0012 15.0 27195 0.2766 0.6692 0.6539 0.6615 0.9610
0.001 16.0 29008 0.2938 0.6692 0.6415 0.6551 0.9603
0.0007 17.0 30821 0.2969 0.6654 0.6490 0.6571 0.9604
0.0007 18.0 32634 0.3035 0.6628 0.6456 0.6541 0.9601
0.0007 19.0 34447 0.2947 0.6730 0.6489 0.6607 0.9609
0.0004 20.0 36260 0.2983 0.6698 0.6499 0.6597 0.9607

Framework versions

  • Transformers 4.21.0
  • Pytorch 1.12.0+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1