chintagunta85's picture
update model card README.md
c1362c8
metadata
tags:
  - generated_from_trainer
datasets:
  - i2b22014
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: electramed-small-deid2014-ner-v3
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: i2b22014
          type: i2b22014
          config: i2b22014-deid
          split: train
          args: i2b22014-deid
        metrics:
          - name: Precision
            type: precision
            value: 0.7776378519384726
          - name: Recall
            type: recall
            value: 0.7946502435885652
          - name: F1
            type: f1
            value: 0.7860520094562647
          - name: Accuracy
            type: accuracy
            value: 0.9908687950002661

electramed-small-deid2014-ner-v3

This model is a fine-tuned version of giacomomiolo/electramed_small_scivocab on the i2b22014 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0354
  • Precision: 0.7776
  • Recall: 0.7947
  • F1: 0.7861
  • Accuracy: 0.9909

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0125 1.0 1838 0.1338 0.3514 0.3812 0.3657 0.9715
0.0032 2.0 3676 0.0856 0.4444 0.5156 0.4774 0.9778
0.0012 3.0 5514 0.0678 0.5222 0.5994 0.5581 0.9819
0.0006 4.0 7352 0.0547 0.6900 0.7025 0.6962 0.9865
0.018 5.0 9190 0.0466 0.7227 0.7468 0.7345 0.9881
0.0002 6.0 11028 0.0419 0.7396 0.7664 0.7528 0.9891
0.0002 7.0 12866 0.0390 0.7730 0.7693 0.7712 0.9901
0.0002 8.0 14704 0.0368 0.7778 0.7822 0.7800 0.9906
0.0001 9.0 16542 0.0359 0.7765 0.7898 0.7831 0.9907
0.0001 10.0 18380 0.0354 0.7776 0.7947 0.7861 0.9909

Framework versions

  • Transformers 4.21.3
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1