chintagunta85's picture
update model card README.md
613d35f
metadata
tags:
  - generated_from_trainer
datasets:
  - ade_drug_effect_ner
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: electramed-small-ADE-DRUG-EFFECT-ner-v3
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: ade_drug_effect_ner
          type: ade_drug_effect_ner
          config: ade
          split: train
          args: ade
        metrics:
          - name: Precision
            type: precision
            value: 0.7436108821104699
          - name: Recall
            type: recall
            value: 0.6711309523809523
          - name: F1
            type: f1
            value: 0.7055142745404771
          - name: Accuracy
            type: accuracy
            value: 0.9334986406954859

electramed-small-ADE-DRUG-EFFECT-ner-v3

This model is a fine-tuned version of giacomomiolo/electramed_small_scivocab on the ade_drug_effect_ner dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1626
  • Precision: 0.7436
  • Recall: 0.6711
  • F1: 0.7055
  • Accuracy: 0.9335

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.3393 1.0 336 0.3055 0.6126 0.6648 0.6376 0.9218
0.2503 2.0 672 0.2138 0.7025 0.6905 0.6964 0.9300
0.1494 3.0 1008 0.1879 0.7342 0.6555 0.6926 0.9326
0.1152 4.0 1344 0.1755 0.7323 0.6797 0.7050 0.9327
0.178 5.0 1680 0.1726 0.7279 0.6827 0.7045 0.9326
0.1814 6.0 2016 0.1654 0.7358 0.6734 0.7032 0.9332
0.1292 7.0 2352 0.1641 0.7332 0.6849 0.7082 0.9336
0.1107 8.0 2688 0.1638 0.7520 0.6522 0.6985 0.9337
0.1911 9.0 3024 0.1625 0.7503 0.6596 0.7020 0.9331
0.1517 10.0 3360 0.1626 0.7436 0.6711 0.7055 0.9335

Framework versions

  • Transformers 4.22.2
  • Pytorch 1.12.1+cu113
  • Datasets 2.5.1
  • Tokenizers 0.12.1