chineidu's picture
Training completed!
256cc90 verified
|
raw
history blame
1.99 kB
metadata
license: apache-2.0
base_model: dslim/distilbert-NER
tags:
  - generated_from_trainer
datasets:
  - conll2012_ontonotesv5
metrics:
  - accuracy
  - f1
model-index:
  - name: distilbert-NER-finetuned
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: conll2012_ontonotesv5
          type: conll2012_ontonotesv5
          config: english_v4
          split: validation
          args: english_v4
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.867816091954023
          - name: F1
            type: f1
            value: 0.4862665310274669

distilbert-NER-finetuned

This model is a fine-tuned version of dslim/distilbert-NER on the conll2012_ontonotesv5 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5043
  • Accuracy: 0.8678
  • F1: 0.4863

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 24
  • eval_batch_size: 24
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.9019 1.0 61 0.6286 0.8406 0.4223
0.5594 2.0 122 0.5302 0.8605 0.4567
0.4537 3.0 183 0.5043 0.8678 0.4863

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.4.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1