chenggong1995 commited on
Commit
9f98dbd
·
verified ·
1 Parent(s): 0d3f0bd

Model save

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-7B
3
+ library_name: transformers
4
+ model_name: Qwen-2.5-7B-Base-RL-E4
5
+ tags:
6
+ - generated_from_trainer
7
+ - trl
8
+ - grpo
9
+ licence: license
10
+ ---
11
+
12
+ # Model Card for Qwen-2.5-7B-Base-RL-E4
13
+
14
+ This model is a fine-tuned version of [Qwen/Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B).
15
+ It has been trained using [TRL](https://github.com/huggingface/trl).
16
+
17
+ ## Quick start
18
+
19
+ ```python
20
+ from transformers import pipeline
21
+
22
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
+ generator = pipeline("text-generation", model="chenggong1995/Qwen-2.5-7B-Base-RL-E4", device="cuda")
24
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
+ print(output["generated_text"])
26
+ ```
27
+
28
+ ## Training procedure
29
+
30
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/gongc1995-city-university-of-hong-kong/huggingface/runs/lfitou3x)
31
+
32
+
33
+ This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
34
+
35
+ ### Framework versions
36
+
37
+ - TRL: 0.16.0.dev0
38
+ - Transformers: 4.49.0
39
+ - Pytorch: 2.5.1
40
+ - Datasets: 3.3.2
41
+ - Tokenizers: 0.21.0
42
+
43
+ ## Citations
44
+
45
+ Cite GRPO as:
46
+
47
+ ```bibtex
48
+ @article{zhihong2024deepseekmath,
49
+ title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
50
+ author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
51
+ year = 2024,
52
+ eprint = {arXiv:2402.03300},
53
+ }
54
+
55
+ ```
56
+
57
+ Cite TRL as:
58
+
59
+ ```bibtex
60
+ @misc{vonwerra2022trl,
61
+ title = {{TRL: Transformer Reinforcement Learning}},
62
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
63
+ year = 2020,
64
+ journal = {GitHub repository},
65
+ publisher = {GitHub},
66
+ howpublished = {\url{https://github.com/huggingface/trl}}
67
+ }
68
+ ```
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 0.0,
3
+ "train_loss": 0.4856032096632307,
4
+ "train_runtime": 39327.4213,
5
+ "train_samples": 7500,
6
+ "train_samples_per_second": 0.763,
7
+ "train_steps_per_second": 0.006
8
+ }
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-7B",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151643,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 18944,
13
+ "max_position_embeddings": 131072,
14
+ "max_window_layers": 28,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 28,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 4,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": null,
21
+ "rope_theta": 1000000.0,
22
+ "sliding_window": 131072,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.49.0",
26
+ "use_cache": false,
27
+ "use_mrope": false,
28
+ "use_sliding_window": false,
29
+ "vocab_size": 152064
30
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "eos_token_id": 151643,
4
+ "max_new_tokens": 2048,
5
+ "transformers_version": "4.49.0"
6
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41bdcf73917ea10381300720c2d8d4641f4824d0ce6dd5530bcda28a0015459e
3
+ size 4877660776
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c27708362adb3a3ae7f1063abcca0a3a82cbb2398d03c982ed1ae0dc8aab877
3
+ size 4932751008
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27d8d15a889995ed97ee9e4515d2b3f40a6715e5a9e5b5ab1df85a79e83b8157
3
+ size 4330865200
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a163d9f25ad6d36f214a676d9b504dbc0c08d03b4642e5659d93a78e2b4ffb82
3
+ size 1089994880
model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15231233024
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.norm.weight": "model-00003-of-00004.safetensors"
345
+ }
346
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|endoftext|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5eee858c5123a4279c3e1f7b81247343f356ac767940b2692a928ad929543214
3
+ size 11422063
tokenizer_config.json ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|endoftext|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "padding_side": "left",
206
+ "split_special_tokens": false,
207
+ "tokenizer_class": "Qwen2Tokenizer",
208
+ "unk_token": null
209
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 0.0,
3
+ "train_loss": 0.4856032096632307,
4
+ "train_runtime": 39327.4213,
5
+ "train_samples": 7500,
6
+ "train_samples_per_second": 0.763,
7
+ "train_steps_per_second": 0.006
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,723 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 3.9893390191897655,
5
+ "eval_steps": 100,
6
+ "global_step": 232,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "clip_ratio": 0.0,
13
+ "completion_length": 445.9810485839844,
14
+ "epoch": 0.017057569296375266,
15
+ "grad_norm": 0.44629430770874023,
16
+ "kl": 0.0,
17
+ "learning_rate": 1.25e-07,
18
+ "loss": -0.0061,
19
+ "reward": 0.2678571566939354,
20
+ "reward_std": 0.3369061201810837,
21
+ "rewards/accuracy_reward": 0.2154017947614193,
22
+ "rewards/format_reward": 0.05245535937137902,
23
+ "step": 1
24
+ },
25
+ {
26
+ "clip_ratio": 0.0,
27
+ "completion_length": 450.8755760192871,
28
+ "epoch": 0.08528784648187633,
29
+ "grad_norm": 0.5371240377426147,
30
+ "kl": 5.666911602020264e-05,
31
+ "learning_rate": 6.25e-07,
32
+ "loss": -0.0072,
33
+ "reward": 0.26227679662406445,
34
+ "reward_std": 0.3667756309732795,
35
+ "rewards/accuracy_reward": 0.1936384029686451,
36
+ "rewards/format_reward": 0.0686383958091028,
37
+ "step": 5
38
+ },
39
+ {
40
+ "clip_ratio": 0.0,
41
+ "completion_length": 440.6763626098633,
42
+ "epoch": 0.17057569296375266,
43
+ "grad_norm": 0.5557937026023865,
44
+ "kl": 0.003149533271789551,
45
+ "learning_rate": 1.25e-06,
46
+ "loss": 0.0071,
47
+ "reward": 0.30558037012815475,
48
+ "reward_std": 0.4056690149009228,
49
+ "rewards/accuracy_reward": 0.19308036658912897,
50
+ "rewards/format_reward": 0.11250000540167093,
51
+ "step": 10
52
+ },
53
+ {
54
+ "clip_ratio": 0.0,
55
+ "completion_length": 456.58997573852537,
56
+ "epoch": 0.255863539445629,
57
+ "grad_norm": 4.744609832763672,
58
+ "kl": 0.0615509033203125,
59
+ "learning_rate": 1.875e-06,
60
+ "loss": 0.0307,
61
+ "reward": 0.674107177555561,
62
+ "reward_std": 0.5331576444208622,
63
+ "rewards/accuracy_reward": 0.27075893972069026,
64
+ "rewards/format_reward": 0.4033482324331999,
65
+ "step": 15
66
+ },
67
+ {
68
+ "clip_ratio": 0.0,
69
+ "completion_length": 481.85694046020507,
70
+ "epoch": 0.3411513859275053,
71
+ "grad_norm": 0.46378934383392334,
72
+ "kl": 0.06910400390625,
73
+ "learning_rate": 2.5e-06,
74
+ "loss": 0.0287,
75
+ "reward": 1.0837054058909417,
76
+ "reward_std": 0.5833071276545525,
77
+ "rewards/accuracy_reward": 0.4551339499652386,
78
+ "rewards/format_reward": 0.6285714603960514,
79
+ "step": 20
80
+ },
81
+ {
82
+ "clip_ratio": 0.0,
83
+ "completion_length": 518.9658714294434,
84
+ "epoch": 0.42643923240938164,
85
+ "grad_norm": 3.33089017868042,
86
+ "kl": 0.056927490234375,
87
+ "learning_rate": 2.999828909426247e-06,
88
+ "loss": 0.0487,
89
+ "reward": 1.3687500655651093,
90
+ "reward_std": 0.50418995693326,
91
+ "rewards/accuracy_reward": 0.581250024586916,
92
+ "rewards/format_reward": 0.7875000387430191,
93
+ "step": 25
94
+ },
95
+ {
96
+ "clip_ratio": 0.0,
97
+ "completion_length": 517.6306053161621,
98
+ "epoch": 0.511727078891258,
99
+ "grad_norm": 7.978788375854492,
100
+ "kl": 0.0954803466796875,
101
+ "learning_rate": 2.9938448364256362e-06,
102
+ "loss": 0.0525,
103
+ "reward": 1.4741072177886962,
104
+ "reward_std": 0.43093371838331224,
105
+ "rewards/accuracy_reward": 0.5995536006987094,
106
+ "rewards/format_reward": 0.8745536118745804,
107
+ "step": 30
108
+ },
109
+ {
110
+ "clip_ratio": 0.0,
111
+ "completion_length": 505.315869140625,
112
+ "epoch": 0.5970149253731343,
113
+ "grad_norm": 175585.21875,
114
+ "kl": 64.5933837890625,
115
+ "learning_rate": 2.979345224048116e-06,
116
+ "loss": 5.1443,
117
+ "reward": 1.4098214894533156,
118
+ "reward_std": 0.4775668144226074,
119
+ "rewards/accuracy_reward": 0.5758928783237934,
120
+ "rewards/format_reward": 0.833928607404232,
121
+ "step": 35
122
+ },
123
+ {
124
+ "clip_ratio": 0.0,
125
+ "completion_length": 498.5922119140625,
126
+ "epoch": 0.6823027718550106,
127
+ "grad_norm": 2.6241941452026367,
128
+ "kl": 0.74183349609375,
129
+ "learning_rate": 2.956412726139078e-06,
130
+ "loss": 0.1161,
131
+ "reward": 1.2595982730388642,
132
+ "reward_std": 0.5859433703124524,
133
+ "rewards/accuracy_reward": 0.5636160977184772,
134
+ "rewards/format_reward": 0.695982177555561,
135
+ "step": 40
136
+ },
137
+ {
138
+ "clip_ratio": 0.0,
139
+ "completion_length": 519.4406471252441,
140
+ "epoch": 0.767590618336887,
141
+ "grad_norm": 52.20960998535156,
142
+ "kl": 0.151666259765625,
143
+ "learning_rate": 2.925178067512904e-06,
144
+ "loss": 0.1406,
145
+ "reward": 1.215401840209961,
146
+ "reward_std": 0.6168530285358429,
147
+ "rewards/accuracy_reward": 0.5671875238418579,
148
+ "rewards/format_reward": 0.648214316368103,
149
+ "step": 45
150
+ },
151
+ {
152
+ "clip_ratio": 0.0,
153
+ "completion_length": 566.0794883728028,
154
+ "epoch": 0.8528784648187633,
155
+ "grad_norm": 9.431961059570312,
156
+ "kl": 0.23187255859375,
157
+ "learning_rate": 2.88581929876693e-06,
158
+ "loss": 0.2278,
159
+ "reward": 1.245089340209961,
160
+ "reward_std": 0.6514639720320702,
161
+ "rewards/accuracy_reward": 0.5736607365310192,
162
+ "rewards/format_reward": 0.6714285984635353,
163
+ "step": 50
164
+ },
165
+ {
166
+ "clip_ratio": 0.0,
167
+ "completion_length": 614.7377502441407,
168
+ "epoch": 0.9381663113006397,
169
+ "grad_norm": 28.97673988342285,
170
+ "kl": 3.216015625,
171
+ "learning_rate": 2.8385607813186967e-06,
172
+ "loss": 0.434,
173
+ "reward": 1.1569196969270705,
174
+ "reward_std": 0.7305632084608078,
175
+ "rewards/accuracy_reward": 0.5412946678698063,
176
+ "rewards/format_reward": 0.615625025331974,
177
+ "step": 55
178
+ },
179
+ {
180
+ "clip_ratio": 0.0,
181
+ "completion_length": 559.5640083312989,
182
+ "epoch": 1.0341151385927505,
183
+ "grad_norm": 21.23921775817871,
184
+ "kl": 6.149072265625,
185
+ "learning_rate": 2.7836719084521715e-06,
186
+ "loss": 0.6512,
187
+ "reward": 1.2779018491506577,
188
+ "reward_std": 0.6680191181600094,
189
+ "rewards/accuracy_reward": 0.5743303805589676,
190
+ "rewards/format_reward": 0.7035714641213417,
191
+ "step": 60
192
+ },
193
+ {
194
+ "clip_ratio": 0.0,
195
+ "completion_length": 550.1716812133789,
196
+ "epoch": 1.1194029850746268,
197
+ "grad_norm": 22.82264518737793,
198
+ "kl": 2.95859375,
199
+ "learning_rate": 2.7214655696635407e-06,
200
+ "loss": 0.4399,
201
+ "reward": 1.30558041036129,
202
+ "reward_std": 0.6594597332179546,
203
+ "rewards/accuracy_reward": 0.5687500216066838,
204
+ "rewards/format_reward": 0.7368303894996643,
205
+ "step": 65
206
+ },
207
+ {
208
+ "clip_ratio": 0.0,
209
+ "completion_length": 569.2410942077637,
210
+ "epoch": 1.2046908315565032,
211
+ "grad_norm": 22.326448440551758,
212
+ "kl": 2.64033203125,
213
+ "learning_rate": 2.652296367060421e-06,
214
+ "loss": 0.4324,
215
+ "reward": 1.283482199907303,
216
+ "reward_std": 0.6751217097043991,
217
+ "rewards/accuracy_reward": 0.5662946663796902,
218
+ "rewards/format_reward": 0.7171875342726708,
219
+ "step": 70
220
+ },
221
+ {
222
+ "clip_ratio": 0.0,
223
+ "completion_length": 589.6875289916992,
224
+ "epoch": 1.2899786780383795,
225
+ "grad_norm": 11.764822959899902,
226
+ "kl": 2.82216796875,
227
+ "learning_rate": 2.5765585939817676e-06,
228
+ "loss": 0.454,
229
+ "reward": 1.2718750685453415,
230
+ "reward_std": 0.6881907656788826,
231
+ "rewards/accuracy_reward": 0.5497768148779869,
232
+ "rewards/format_reward": 0.7220982432365417,
233
+ "step": 75
234
+ },
235
+ {
236
+ "clip_ratio": 0.0,
237
+ "completion_length": 588.3623039245606,
238
+ "epoch": 1.375266524520256,
239
+ "grad_norm": 16.239723205566406,
240
+ "kl": 1.092626953125,
241
+ "learning_rate": 2.4946839873611927e-06,
242
+ "loss": 0.3543,
243
+ "reward": 1.2966518431901932,
244
+ "reward_std": 0.7087490603327751,
245
+ "rewards/accuracy_reward": 0.5763393104076385,
246
+ "rewards/format_reward": 0.7203125327825546,
247
+ "step": 80
248
+ },
249
+ {
250
+ "clip_ratio": 0.0,
251
+ "completion_length": 554.1701164245605,
252
+ "epoch": 1.4605543710021323,
253
+ "grad_norm": 225.1170196533203,
254
+ "kl": 3.343701171875,
255
+ "learning_rate": 2.4071392666461563e-06,
256
+ "loss": 0.4732,
257
+ "reward": 1.348883980512619,
258
+ "reward_std": 0.6181702017784119,
259
+ "rewards/accuracy_reward": 0.5640625275671483,
260
+ "rewards/format_reward": 0.7848214700818061,
261
+ "step": 85
262
+ },
263
+ {
264
+ "clip_ratio": 0.0,
265
+ "completion_length": 557.5998046875,
266
+ "epoch": 1.5458422174840085,
267
+ "grad_norm": 35.329673767089844,
268
+ "kl": 3.09814453125,
269
+ "learning_rate": 2.314423473302218e-06,
270
+ "loss": 0.4767,
271
+ "reward": 1.3281250685453414,
272
+ "reward_std": 0.6315318033099174,
273
+ "rewards/accuracy_reward": 0.5370535977184773,
274
+ "rewards/format_reward": 0.7910714611411095,
275
+ "step": 90
276
+ },
277
+ {
278
+ "clip_ratio": 0.0,
279
+ "completion_length": 565.7868560791015,
280
+ "epoch": 1.6311300639658848,
281
+ "grad_norm": 64.45903778076172,
282
+ "kl": 2.35947265625,
283
+ "learning_rate": 2.2170651260682927e-06,
284
+ "loss": 0.424,
285
+ "reward": 1.3314732700586318,
286
+ "reward_std": 0.6345132827758789,
287
+ "rewards/accuracy_reward": 0.5468750260770321,
288
+ "rewards/format_reward": 0.7845982551574707,
289
+ "step": 95
290
+ },
291
+ {
292
+ "epoch": 1.716417910447761,
293
+ "grad_norm": 31.969350814819336,
294
+ "learning_rate": 2.1156192081791355e-06,
295
+ "loss": 2.0191,
296
+ "step": 100
297
+ },
298
+ {
299
+ "epoch": 1.716417910447761,
300
+ "eval_clip_ratio": 0.0,
301
+ "eval_completion_length": 573.7114408937887,
302
+ "eval_kl": 6.245007987220447,
303
+ "eval_loss": 0.679384171962738,
304
+ "eval_reward": 1.3160087325321599,
305
+ "eval_reward_std": 0.6340273570138425,
306
+ "eval_rewards/accuracy_reward": 0.5342024423824713,
307
+ "eval_rewards/format_reward": 0.7818062878645267,
308
+ "eval_runtime": 4416.6844,
309
+ "eval_samples_per_second": 1.132,
310
+ "eval_steps_per_second": 0.01,
311
+ "step": 100
312
+ },
313
+ {
314
+ "clip_ratio": 0.0,
315
+ "completion_length": 576.5287105560303,
316
+ "epoch": 1.8017057569296375,
317
+ "grad_norm": 38.427772521972656,
318
+ "kl": 14.87158203125,
319
+ "learning_rate": 2.010664003729149e-06,
320
+ "loss": 0.5592,
321
+ "reward": 1.361272382736206,
322
+ "reward_std": 0.6285464949905872,
323
+ "rewards/accuracy_reward": 0.5775669913738966,
324
+ "rewards/format_reward": 0.7837053917348384,
325
+ "step": 105
326
+ },
327
+ {
328
+ "clip_ratio": 0.0,
329
+ "completion_length": 571.036637878418,
330
+ "epoch": 1.886993603411514,
331
+ "grad_norm": 13.744680404663086,
332
+ "kl": 4.437109375,
333
+ "learning_rate": 1.9027978012115653e-06,
334
+ "loss": 0.5515,
335
+ "reward": 1.3685268431901931,
336
+ "reward_std": 0.6233541399240494,
337
+ "rewards/accuracy_reward": 0.5756696701049805,
338
+ "rewards/format_reward": 0.7928571805357933,
339
+ "step": 110
340
+ },
341
+ {
342
+ "clip_ratio": 0.0,
343
+ "completion_length": 561.5263648986817,
344
+ "epoch": 1.9722814498933903,
345
+ "grad_norm": 11.377424240112305,
346
+ "kl": 5.195703125,
347
+ "learning_rate": 1.7926354830241926e-06,
348
+ "loss": 0.5897,
349
+ "reward": 1.3955357789993286,
350
+ "reward_std": 0.5930619619786739,
351
+ "rewards/accuracy_reward": 0.5919643118977547,
352
+ "rewards/format_reward": 0.8035714611411094,
353
+ "step": 115
354
+ },
355
+ {
356
+ "clip_ratio": 0.0,
357
+ "completion_length": 543.7195793151856,
358
+ "epoch": 2.068230277185501,
359
+ "grad_norm": 21.994367599487305,
360
+ "kl": 3.9482421875,
361
+ "learning_rate": 1.6808050203829845e-06,
362
+ "loss": 0.4929,
363
+ "reward": 1.4200893491506577,
364
+ "reward_std": 0.5751285634934902,
365
+ "rewards/accuracy_reward": 0.594196455925703,
366
+ "rewards/format_reward": 0.8258928969502449,
367
+ "step": 120
368
+ },
369
+ {
370
+ "clip_ratio": 0.0,
371
+ "completion_length": 528.3288215637207,
372
+ "epoch": 2.1535181236673773,
373
+ "grad_norm": 23.414892196655273,
374
+ "kl": 3.4708984375,
375
+ "learning_rate": 1.5679438936238768e-06,
376
+ "loss": 0.4547,
377
+ "reward": 1.4633929193019868,
378
+ "reward_std": 0.5353646248579025,
379
+ "rewards/accuracy_reward": 0.6140625290572643,
380
+ "rewards/format_reward": 0.8493303969502449,
381
+ "step": 125
382
+ },
383
+ {
384
+ "clip_ratio": 0.0,
385
+ "completion_length": 532.4109573364258,
386
+ "epoch": 2.2388059701492535,
387
+ "grad_norm": 5.716637134552002,
388
+ "kl": 3.59921875,
389
+ "learning_rate": 1.454695458298667e-06,
390
+ "loss": 0.4406,
391
+ "reward": 1.4633929222822188,
392
+ "reward_std": 0.5372500255703926,
393
+ "rewards/accuracy_reward": 0.6140625238418579,
394
+ "rewards/format_reward": 0.8493303999304771,
395
+ "step": 130
396
+ },
397
+ {
398
+ "clip_ratio": 0.0,
399
+ "completion_length": 529.8064964294433,
400
+ "epoch": 2.3240938166311302,
401
+ "grad_norm": 11.957624435424805,
402
+ "kl": 3.2958984375,
403
+ "learning_rate": 1.341705277779715e-06,
404
+ "loss": 0.4071,
405
+ "reward": 1.4368304163217545,
406
+ "reward_std": 0.5057652793824673,
407
+ "rewards/accuracy_reward": 0.5850446701049805,
408
+ "rewards/format_reward": 0.8517857536673545,
409
+ "step": 135
410
+ },
411
+ {
412
+ "clip_ratio": 0.0,
413
+ "completion_length": 513.0975715637207,
414
+ "epoch": 2.4093816631130065,
415
+ "grad_norm": 409.32232666015625,
416
+ "kl": 3.7796875,
417
+ "learning_rate": 1.2296174432791415e-06,
418
+ "loss": 0.452,
419
+ "reward": 1.4669643461704254,
420
+ "reward_std": 0.5007161863148213,
421
+ "rewards/accuracy_reward": 0.6037946708500386,
422
+ "rewards/format_reward": 0.8631696820259094,
423
+ "step": 140
424
+ },
425
+ {
426
+ "clip_ratio": 0.0,
427
+ "completion_length": 513.7160926818848,
428
+ "epoch": 2.4946695095948828,
429
+ "grad_norm": 4.6824445724487305,
430
+ "kl": 3.0923828125,
431
+ "learning_rate": 1.1190709022599545e-06,
432
+ "loss": 0.3687,
433
+ "reward": 1.501339355111122,
434
+ "reward_std": 0.501213763654232,
435
+ "rewards/accuracy_reward": 0.6316964566707611,
436
+ "rewards/format_reward": 0.8696429014205933,
437
+ "step": 145
438
+ },
439
+ {
440
+ "clip_ratio": 0.0,
441
+ "completion_length": 503.14399871826174,
442
+ "epoch": 2.579957356076759,
443
+ "grad_norm": 5.0907368659973145,
444
+ "kl": 2.658984375,
445
+ "learning_rate": 1.0106958161686963e-06,
446
+ "loss": 0.3415,
447
+ "reward": 1.4787947177886962,
448
+ "reward_std": 0.47073035016655923,
449
+ "rewards/accuracy_reward": 0.6015625268220901,
450
+ "rewards/format_reward": 0.8772321864962578,
451
+ "step": 150
452
+ },
453
+ {
454
+ "clip_ratio": 0.0,
455
+ "completion_length": 493.3506935119629,
456
+ "epoch": 2.6652452025586353,
457
+ "grad_norm": 5.612578868865967,
458
+ "kl": 3.1716796875,
459
+ "learning_rate": 9.051099682520474e-07,
460
+ "loss": 0.3894,
461
+ "reward": 1.5064732819795608,
462
+ "reward_std": 0.45394266620278356,
463
+ "rewards/accuracy_reward": 0.6234375290572644,
464
+ "rewards/format_reward": 0.8830357596278191,
465
+ "step": 155
466
+ },
467
+ {
468
+ "clip_ratio": 0.0,
469
+ "completion_length": 491.6685501098633,
470
+ "epoch": 2.750533049040512,
471
+ "grad_norm": 9.828149795532227,
472
+ "kl": 2.4236328125,
473
+ "learning_rate": 8.029152419343472e-07,
474
+ "loss": 0.3284,
475
+ "reward": 1.5341518610715865,
476
+ "reward_std": 0.44977339953184126,
477
+ "rewards/accuracy_reward": 0.6435268133878708,
478
+ "rewards/format_reward": 0.8906250447034836,
479
+ "step": 160
480
+ },
481
+ {
482
+ "clip_ratio": 0.0,
483
+ "completion_length": 485.81029205322267,
484
+ "epoch": 2.835820895522388,
485
+ "grad_norm": 4.9597859382629395,
486
+ "kl": 2.07568359375,
487
+ "learning_rate": 7.046941898307347e-07,
488
+ "loss": 0.3018,
489
+ "reward": 1.5156250655651093,
490
+ "reward_std": 0.4370568677783012,
491
+ "rewards/accuracy_reward": 0.6238839596509933,
492
+ "rewards/format_reward": 0.8917411118745804,
493
+ "step": 165
494
+ },
495
+ {
496
+ "clip_ratio": 0.0,
497
+ "completion_length": 497.5314971923828,
498
+ "epoch": 2.9211087420042645,
499
+ "grad_norm": 84.52203369140625,
500
+ "kl": 3.3498046875,
501
+ "learning_rate": 6.11006712953975e-07,
502
+ "loss": 0.4164,
503
+ "reward": 1.5022322148084641,
504
+ "reward_std": 0.4752186842262745,
505
+ "rewards/accuracy_reward": 0.6212053842842579,
506
+ "rewards/format_reward": 0.8810268267989159,
507
+ "step": 170
508
+ },
509
+ {
510
+ "clip_ratio": 0.0,
511
+ "completion_length": 495.55774307250977,
512
+ "epoch": 3.0170575692963753,
513
+ "grad_norm": 16.004627227783203,
514
+ "kl": 3.1123046875,
515
+ "learning_rate": 5.223868690448817e-07,
516
+ "loss": 0.4053,
517
+ "reward": 1.4607143461704255,
518
+ "reward_std": 0.49991785958409307,
519
+ "rewards/accuracy_reward": 0.5937500283122062,
520
+ "rewards/format_reward": 0.8669643327593803,
521
+ "step": 175
522
+ },
523
+ {
524
+ "clip_ratio": 0.0,
525
+ "completion_length": 504.62011337280273,
526
+ "epoch": 3.1023454157782515,
527
+ "grad_norm": 4.859574794769287,
528
+ "kl": 3.499609375,
529
+ "learning_rate": 4.3933982822017883e-07,
530
+ "loss": 0.4582,
531
+ "reward": 1.4575893461704255,
532
+ "reward_std": 0.5223984435200691,
533
+ "rewards/accuracy_reward": 0.6051339566707611,
534
+ "rewards/format_reward": 0.8524553969502449,
535
+ "step": 180
536
+ },
537
+ {
538
+ "clip_ratio": 0.0,
539
+ "completion_length": 505.25716705322264,
540
+ "epoch": 3.1876332622601278,
541
+ "grad_norm": 6.827749729156494,
542
+ "kl": 3.01005859375,
543
+ "learning_rate": 3.6233899329188115e-07,
544
+ "loss": 0.3983,
545
+ "reward": 1.4602679193019867,
546
+ "reward_std": 0.49594502747058866,
547
+ "rewards/accuracy_reward": 0.5908482372760773,
548
+ "rewards/format_reward": 0.8694196835160255,
549
+ "step": 185
550
+ },
551
+ {
552
+ "clip_ratio": 0.0,
553
+ "completion_length": 499.8402046203613,
554
+ "epoch": 3.272921108742004,
555
+ "grad_norm": 5.723031520843506,
556
+ "kl": 2.642578125,
557
+ "learning_rate": 2.9182330117358096e-07,
558
+ "loss": 0.381,
559
+ "reward": 1.4939732760190965,
560
+ "reward_std": 0.4914128452539444,
561
+ "rewards/accuracy_reward": 0.615401814877987,
562
+ "rewards/format_reward": 0.8785714715719223,
563
+ "step": 190
564
+ },
565
+ {
566
+ "clip_ratio": 0.0,
567
+ "completion_length": 495.40426177978514,
568
+ "epoch": 3.3582089552238807,
569
+ "grad_norm": 7.8606390953063965,
570
+ "kl": 3.060546875,
571
+ "learning_rate": 2.281947207567473e-07,
572
+ "loss": 0.3953,
573
+ "reward": 1.468303632736206,
574
+ "reward_std": 0.4849529266357422,
575
+ "rewards/accuracy_reward": 0.5866071686148644,
576
+ "rewards/format_reward": 0.8816964745521545,
577
+ "step": 195
578
+ },
579
+ {
580
+ "epoch": 3.443496801705757,
581
+ "grad_norm": 4.874986171722412,
582
+ "learning_rate": 1.718159615201853e-07,
583
+ "loss": 0.3222,
584
+ "step": 200
585
+ },
586
+ {
587
+ "epoch": 3.443496801705757,
588
+ "eval_clip_ratio": 0.0,
589
+ "eval_completion_length": 488.8427760700067,
590
+ "eval_kl": 2.4132263378594248,
591
+ "eval_loss": 0.32682499289512634,
592
+ "eval_reward": 1.4757246209409671,
593
+ "eval_reward_std": 0.4513232411858373,
594
+ "eval_rewards/accuracy_reward": 0.5826677580039722,
595
+ "eval_rewards/format_reward": 0.8930568643652212,
596
+ "eval_runtime": 4221.4152,
597
+ "eval_samples_per_second": 1.184,
598
+ "eval_steps_per_second": 0.011,
599
+ "step": 200
600
+ },
601
+ {
602
+ "clip_ratio": 0.0,
603
+ "completion_length": 489.15783576965333,
604
+ "epoch": 3.5287846481876333,
605
+ "grad_norm": 5.266751289367676,
606
+ "kl": 2.5323974609375,
607
+ "learning_rate": 1.2300840593454622e-07,
608
+ "loss": 0.3495,
609
+ "reward": 1.5162947088479997,
610
+ "reward_std": 0.4514313301071525,
611
+ "rewards/accuracy_reward": 0.6287946715950966,
612
+ "rewards/format_reward": 0.8875000402331352,
613
+ "step": 205
614
+ },
615
+ {
616
+ "clip_ratio": 0.0,
617
+ "completion_length": 491.2348434448242,
618
+ "epoch": 3.6140724946695095,
619
+ "grad_norm": 9.579411506652832,
620
+ "kl": 2.3810546875,
621
+ "learning_rate": 8.20502774480395e-08,
622
+ "loss": 0.308,
623
+ "reward": 1.5162946969270705,
624
+ "reward_std": 0.4419292353093624,
625
+ "rewards/accuracy_reward": 0.6263393133878707,
626
+ "rewards/format_reward": 0.8899554029107094,
627
+ "step": 210
628
+ },
629
+ {
630
+ "clip_ratio": 0.0,
631
+ "completion_length": 489.42010803222655,
632
+ "epoch": 3.699360341151386,
633
+ "grad_norm": 4.795035362243652,
634
+ "kl": 2.62646484375,
635
+ "learning_rate": 4.917505449659615e-08,
636
+ "loss": 0.3449,
637
+ "reward": 1.5185268491506576,
638
+ "reward_std": 0.45038328543305395,
639
+ "rewards/accuracy_reward": 0.6337053865194321,
640
+ "rewards/format_reward": 0.8848214730620384,
641
+ "step": 215
642
+ },
643
+ {
644
+ "clip_ratio": 0.0,
645
+ "completion_length": 495.2564956665039,
646
+ "epoch": 3.7846481876332625,
647
+ "grad_norm": 6.437369346618652,
648
+ "kl": 2.59952392578125,
649
+ "learning_rate": 2.4570139579284723e-08,
650
+ "loss": 0.3286,
651
+ "reward": 1.495535773038864,
652
+ "reward_std": 0.46331221498548986,
653
+ "rewards/accuracy_reward": 0.6071428850293159,
654
+ "rewards/format_reward": 0.8883929014205932,
655
+ "step": 220
656
+ },
657
+ {
658
+ "clip_ratio": 0.0,
659
+ "completion_length": 485.0676559448242,
660
+ "epoch": 3.8699360341151388,
661
+ "grad_norm": 4.596541404724121,
662
+ "kl": 2.499609375,
663
+ "learning_rate": 8.37579098581176e-09,
664
+ "loss": 0.3586,
665
+ "reward": 1.5156250715255737,
666
+ "reward_std": 0.4558119185268879,
667
+ "rewards/accuracy_reward": 0.6247768118977547,
668
+ "rewards/format_reward": 0.8908482611179351,
669
+ "step": 225
670
+ },
671
+ {
672
+ "clip_ratio": 0.0,
673
+ "completion_length": 497.7335029602051,
674
+ "epoch": 3.955223880597015,
675
+ "grad_norm": 5.619830131530762,
676
+ "kl": 2.5017578125,
677
+ "learning_rate": 6.843232656998933e-10,
678
+ "loss": 0.3316,
679
+ "reward": 1.4997768551111221,
680
+ "reward_std": 0.44890894591808317,
681
+ "rewards/accuracy_reward": 0.6104911021888256,
682
+ "rewards/format_reward": 0.8892857521772385,
683
+ "step": 230
684
+ },
685
+ {
686
+ "clip_ratio": 0.0,
687
+ "completion_length": 497.67967987060547,
688
+ "epoch": 3.9893390191897655,
689
+ "kl": 2.341064453125,
690
+ "reward": 1.5100447237491608,
691
+ "reward_std": 0.44926475919783115,
692
+ "rewards/accuracy_reward": 0.6216518096625805,
693
+ "rewards/format_reward": 0.8883928954601288,
694
+ "step": 232,
695
+ "total_flos": 0.0,
696
+ "train_loss": 0.4856032096632307,
697
+ "train_runtime": 39327.4213,
698
+ "train_samples_per_second": 0.763,
699
+ "train_steps_per_second": 0.006
700
+ }
701
+ ],
702
+ "logging_steps": 5,
703
+ "max_steps": 232,
704
+ "num_input_tokens_seen": 0,
705
+ "num_train_epochs": 4,
706
+ "save_steps": 500,
707
+ "stateful_callbacks": {
708
+ "TrainerControl": {
709
+ "args": {
710
+ "should_epoch_stop": false,
711
+ "should_evaluate": false,
712
+ "should_log": false,
713
+ "should_save": false,
714
+ "should_training_stop": false
715
+ },
716
+ "attributes": {}
717
+ }
718
+ },
719
+ "total_flos": 0.0,
720
+ "train_batch_size": 16,
721
+ "trial_name": null,
722
+ "trial_params": null
723
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:64c6f6630b8a5a88f7029bab8461886d206fb2c510193f119d0d3600ab77af8c
3
+ size 7992
vocab.json ADDED
The diff for this file is too large to render. See raw diff