chchen commited on
Commit
1843a45
1 Parent(s): 90399e7

Model save

Browse files
Files changed (2) hide show
  1. README.md +77 -0
  2. trainer_log.jsonl +36 -0
README.md ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama2
3
+ library_name: peft
4
+ tags:
5
+ - trl
6
+ - dpo
7
+ - llama-factory
8
+ - generated_from_trainer
9
+ base_model: lmsys/vicuna-7b-v1.5
10
+ model-index:
11
+ - name: Vicuna-7B-v1.5-ORPO-SALT
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # Vicuna-7B-v1.5-ORPO-SALT
19
+
20
+ This model is a fine-tuned version of [lmsys/vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.9497
23
+ - Rewards/chosen: -0.0879
24
+ - Rewards/rejected: -0.0995
25
+ - Rewards/accuracies: 0.5164
26
+ - Rewards/margins: 0.0116
27
+ - Logps/rejected: -0.9948
28
+ - Logps/chosen: -0.8787
29
+ - Logits/rejected: -0.3581
30
+ - Logits/chosen: -0.3775
31
+ - Sft Loss: 0.8787
32
+ - Odds Ratio Loss: 0.7104
33
+
34
+ ## Model description
35
+
36
+ More information needed
37
+
38
+ ## Intended uses & limitations
39
+
40
+ More information needed
41
+
42
+ ## Training and evaluation data
43
+
44
+ More information needed
45
+
46
+ ## Training procedure
47
+
48
+ ### Training hyperparameters
49
+
50
+ The following hyperparameters were used during training:
51
+ - learning_rate: 5e-06
52
+ - train_batch_size: 2
53
+ - eval_batch_size: 2
54
+ - seed: 42
55
+ - gradient_accumulation_steps: 8
56
+ - total_train_batch_size: 16
57
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
58
+ - lr_scheduler_type: cosine
59
+ - lr_scheduler_warmup_steps: 0.1
60
+ - num_epochs: 3.0
61
+
62
+ ### Training results
63
+
64
+ | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Sft Loss | Odds Ratio Loss |
65
+ |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:--------:|:---------------:|
66
+ | 1.0008 | 0.8082 | 500 | 0.9777 | -0.0907 | -0.1019 | 0.5055 | 0.0113 | -1.0193 | -0.9066 | -0.3689 | -0.3878 | 0.9066 | 0.7105 |
67
+ | 0.8458 | 1.6165 | 1000 | 0.9560 | -0.0885 | -0.1000 | 0.5191 | 0.0115 | -1.0000 | -0.8850 | -0.3578 | -0.3772 | 0.8850 | 0.7097 |
68
+ | 0.9219 | 2.4247 | 1500 | 0.9497 | -0.0879 | -0.0995 | 0.5164 | 0.0116 | -0.9948 | -0.8787 | -0.3581 | -0.3775 | 0.8787 | 0.7104 |
69
+
70
+
71
+ ### Framework versions
72
+
73
+ - PEFT 0.10.0
74
+ - Transformers 4.40.1
75
+ - Pytorch 2.3.0
76
+ - Datasets 2.19.0
77
+ - Tokenizers 0.19.1
trainer_log.jsonl CHANGED
@@ -151,3 +151,39 @@
151
  {"current_steps": 1490, "total_steps": 1854, "loss": 1.0107, "accuracy": 0.512499988079071, "learning_rate": 4.607082849092523e-07, "epoch": 2.40856738735098, "percentage": 80.37, "elapsed_time": "3:59:34", "remaining_time": "0:58:31"}
152
  {"current_steps": 1500, "total_steps": 1854, "loss": 0.9219, "accuracy": 0.5062500238418579, "learning_rate": 4.3649635614901405e-07, "epoch": 2.4247322691452817, "percentage": 80.91, "elapsed_time": "4:01:09", "remaining_time": "0:56:54"}
153
  {"current_steps": 1500, "total_steps": 1854, "eval_loss": 0.9497246742248535, "epoch": 2.4247322691452817, "percentage": 80.91, "elapsed_time": "4:04:22", "remaining_time": "0:57:40"}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
151
  {"current_steps": 1490, "total_steps": 1854, "loss": 1.0107, "accuracy": 0.512499988079071, "learning_rate": 4.607082849092523e-07, "epoch": 2.40856738735098, "percentage": 80.37, "elapsed_time": "3:59:34", "remaining_time": "0:58:31"}
152
  {"current_steps": 1500, "total_steps": 1854, "loss": 0.9219, "accuracy": 0.5062500238418579, "learning_rate": 4.3649635614901405e-07, "epoch": 2.4247322691452817, "percentage": 80.91, "elapsed_time": "4:01:09", "remaining_time": "0:56:54"}
153
  {"current_steps": 1500, "total_steps": 1854, "eval_loss": 0.9497246742248535, "epoch": 2.4247322691452817, "percentage": 80.91, "elapsed_time": "4:04:22", "remaining_time": "0:57:40"}
154
+ {"current_steps": 1510, "total_steps": 1854, "loss": 0.9062, "accuracy": 0.5375000238418579, "learning_rate": 4.128769732701973e-07, "epoch": 2.4408971509395836, "percentage": 81.45, "elapsed_time": "4:05:56", "remaining_time": "0:56:01"}
155
+ {"current_steps": 1520, "total_steps": 1854, "loss": 0.9487, "accuracy": 0.5, "learning_rate": 3.8985691870233046e-07, "epoch": 2.4570620327338855, "percentage": 81.98, "elapsed_time": "4:07:28", "remaining_time": "0:54:22"}
156
+ {"current_steps": 1530, "total_steps": 1854, "loss": 0.9661, "accuracy": 0.53125, "learning_rate": 3.6744280277467904e-07, "epoch": 2.4732269145281873, "percentage": 82.52, "elapsed_time": "4:08:59", "remaining_time": "0:52:43"}
157
+ {"current_steps": 1540, "total_steps": 1854, "loss": 0.8596, "accuracy": 0.5625, "learning_rate": 3.456410618180503e-07, "epoch": 2.489391796322489, "percentage": 83.06, "elapsed_time": "4:10:33", "remaining_time": "0:51:05"}
158
+ {"current_steps": 1550, "total_steps": 1854, "loss": 0.9137, "accuracy": 0.53125, "learning_rate": 3.244579563165753e-07, "epoch": 2.5055566781167915, "percentage": 83.6, "elapsed_time": "4:12:04", "remaining_time": "0:49:26"}
159
+ {"current_steps": 1560, "total_steps": 1854, "loss": 0.9267, "accuracy": 0.5375000238418579, "learning_rate": 3.038995691099697e-07, "epoch": 2.521721559911093, "percentage": 84.14, "elapsed_time": "4:13:34", "remaining_time": "0:47:47"}
160
+ {"current_steps": 1570, "total_steps": 1854, "loss": 1.0574, "accuracy": 0.512499988079071, "learning_rate": 2.839718036468192e-07, "epoch": 2.5378864417053952, "percentage": 84.68, "elapsed_time": "4:15:07", "remaining_time": "0:46:08"}
161
+ {"current_steps": 1580, "total_steps": 1854, "loss": 1.0579, "accuracy": 0.4749999940395355, "learning_rate": 2.646803822893723e-07, "epoch": 2.5540513234996967, "percentage": 85.22, "elapsed_time": "4:16:39", "remaining_time": "0:44:30"}
162
+ {"current_steps": 1590, "total_steps": 1854, "loss": 0.9704, "accuracy": 0.512499988079071, "learning_rate": 2.460308446703341e-07, "epoch": 2.570216205293999, "percentage": 85.76, "elapsed_time": "4:18:11", "remaining_time": "0:42:52"}
163
+ {"current_steps": 1600, "total_steps": 1854, "loss": 0.9107, "accuracy": 0.5874999761581421, "learning_rate": 2.2802854610213143e-07, "epoch": 2.5863810870883004, "percentage": 86.3, "elapsed_time": "4:19:43", "remaining_time": "0:41:13"}
164
+ {"current_steps": 1610, "total_steps": 1854, "loss": 0.9881, "accuracy": 0.5375000238418579, "learning_rate": 2.106786560391072e-07, "epoch": 2.6025459688826027, "percentage": 86.84, "elapsed_time": "4:21:14", "remaining_time": "0:39:35"}
165
+ {"current_steps": 1620, "total_steps": 1854, "loss": 0.9563, "accuracy": 0.5, "learning_rate": 1.9398615659308255e-07, "epoch": 2.6187108506769046, "percentage": 87.38, "elapsed_time": "4:22:47", "remaining_time": "0:37:57"}
166
+ {"current_steps": 1630, "total_steps": 1854, "loss": 0.9756, "accuracy": 0.5, "learning_rate": 1.7795584110272184e-07, "epoch": 2.6348757324712064, "percentage": 87.92, "elapsed_time": "4:24:25", "remaining_time": "0:36:20"}
167
+ {"current_steps": 1640, "total_steps": 1854, "loss": 0.9294, "accuracy": 0.4749999940395355, "learning_rate": 1.6259231275709636e-07, "epoch": 2.6510406142655083, "percentage": 88.46, "elapsed_time": "4:26:00", "remaining_time": "0:34:42"}
168
+ {"current_steps": 1650, "total_steps": 1854, "loss": 0.9021, "accuracy": 0.5375000238418579, "learning_rate": 1.478999832738548e-07, "epoch": 2.66720549605981, "percentage": 89.0, "elapsed_time": "4:27:32", "remaining_time": "0:33:04"}
169
+ {"current_steps": 1660, "total_steps": 1854, "loss": 0.8916, "accuracy": 0.512499988079071, "learning_rate": 1.338830716323769e-07, "epoch": 2.683370377854112, "percentage": 89.54, "elapsed_time": "4:29:08", "remaining_time": "0:31:27"}
170
+ {"current_steps": 1670, "total_steps": 1854, "loss": 0.9171, "accuracy": 0.518750011920929, "learning_rate": 1.205456028622723e-07, "epoch": 2.699535259648414, "percentage": 90.08, "elapsed_time": "4:30:36", "remaining_time": "0:29:48"}
171
+ {"current_steps": 1680, "total_steps": 1854, "loss": 0.9016, "accuracy": 0.5874999761581421, "learning_rate": 1.0789140688756805e-07, "epoch": 2.7157001414427158, "percentage": 90.61, "elapsed_time": "4:32:08", "remaining_time": "0:28:11"}
172
+ {"current_steps": 1690, "total_steps": 1854, "loss": 0.9688, "accuracy": 0.44999998807907104, "learning_rate": 9.592411742693098e-08, "epoch": 2.7318650232370176, "percentage": 91.15, "elapsed_time": "4:33:36", "remaining_time": "0:26:33"}
173
+ {"current_steps": 1700, "total_steps": 1854, "loss": 0.894, "accuracy": 0.59375, "learning_rate": 8.464717095022168e-08, "epoch": 2.7480299050313195, "percentage": 91.69, "elapsed_time": "4:35:08", "remaining_time": "0:24:55"}
174
+ {"current_steps": 1710, "total_steps": 1854, "loss": 0.9886, "accuracy": 0.4437499940395355, "learning_rate": 7.406380569169841e-08, "epoch": 2.7641947868256214, "percentage": 92.23, "elapsed_time": "4:36:41", "remaining_time": "0:23:17"}
175
+ {"current_steps": 1720, "total_steps": 1854, "loss": 0.9715, "accuracy": 0.5, "learning_rate": 6.417706072013808e-08, "epoch": 2.7803596686199232, "percentage": 92.77, "elapsed_time": "4:38:15", "remaining_time": "0:21:40"}
176
+ {"current_steps": 1730, "total_steps": 1854, "loss": 0.9602, "accuracy": 0.5, "learning_rate": 5.498977506615294e-08, "epoch": 2.796524550414225, "percentage": 93.31, "elapsed_time": "4:39:51", "remaining_time": "0:20:03"}
177
+ {"current_steps": 1740, "total_steps": 1854, "loss": 1.0182, "accuracy": 0.5625, "learning_rate": 4.6504586906947756e-08, "epoch": 2.812689432208527, "percentage": 93.85, "elapsed_time": "4:41:24", "remaining_time": "0:18:26"}
178
+ {"current_steps": 1750, "total_steps": 1854, "loss": 1.0459, "accuracy": 0.46875, "learning_rate": 3.8723932808754914e-08, "epoch": 2.828854314002829, "percentage": 94.39, "elapsed_time": "4:43:00", "remaining_time": "0:16:49"}
179
+ {"current_steps": 1760, "total_steps": 1854, "loss": 0.9285, "accuracy": 0.543749988079071, "learning_rate": 3.1650047027158014e-08, "epoch": 2.8450191957971307, "percentage": 94.93, "elapsed_time": "4:44:35", "remaining_time": "0:15:12"}
180
+ {"current_steps": 1770, "total_steps": 1854, "loss": 0.8928, "accuracy": 0.5249999761581421, "learning_rate": 2.5284960865517848e-08, "epoch": 2.8611840775914326, "percentage": 95.47, "elapsed_time": "4:46:11", "remaining_time": "0:13:34"}
181
+ {"current_steps": 1780, "total_steps": 1854, "loss": 0.8926, "accuracy": 0.59375, "learning_rate": 1.9630502091670388e-08, "epoch": 2.8773489593857344, "percentage": 96.01, "elapsed_time": "4:47:43", "remaining_time": "0:11:57"}
182
+ {"current_steps": 1790, "total_steps": 1854, "loss": 0.8723, "accuracy": 0.543749988079071, "learning_rate": 1.4688294413074677e-08, "epoch": 2.8935138411800363, "percentage": 96.55, "elapsed_time": "4:49:13", "remaining_time": "0:10:20"}
183
+ {"current_steps": 1800, "total_steps": 1854, "loss": 0.9156, "accuracy": 0.5062500238418579, "learning_rate": 1.0459757010556626e-08, "epoch": 2.909678722974338, "percentage": 97.09, "elapsed_time": "4:50:46", "remaining_time": "0:08:43"}
184
+ {"current_steps": 1810, "total_steps": 1854, "loss": 0.9617, "accuracy": 0.48124998807907104, "learning_rate": 6.94610413078306e-09, "epoch": 2.92584360476864, "percentage": 97.63, "elapsed_time": "4:52:14", "remaining_time": "0:07:06"}
185
+ {"current_steps": 1820, "total_steps": 1854, "loss": 0.8634, "accuracy": 0.606249988079071, "learning_rate": 4.14834473758563e-09, "epoch": 2.942008486562942, "percentage": 98.17, "elapsed_time": "4:53:49", "remaining_time": "0:05:29"}
186
+ {"current_steps": 1830, "total_steps": 1854, "loss": 0.881, "accuracy": 0.5562499761581421, "learning_rate": 2.067282222230349e-09, "epoch": 2.9581733683572438, "percentage": 98.71, "elapsed_time": "4:55:28", "remaining_time": "0:03:52"}
187
+ {"current_steps": 1840, "total_steps": 1854, "loss": 0.9018, "accuracy": 0.5625, "learning_rate": 7.035141727212979e-10, "epoch": 2.9743382501515456, "percentage": 99.24, "elapsed_time": "4:56:57", "remaining_time": "0:02:15"}
188
+ {"current_steps": 1850, "total_steps": 1854, "loss": 1.097, "accuracy": 0.543749988079071, "learning_rate": 5.743220219761592e-11, "epoch": 2.9905031319458475, "percentage": 99.78, "elapsed_time": "4:58:32", "remaining_time": "0:00:38"}
189
+ {"current_steps": 1854, "total_steps": 1854, "epoch": 2.9969690846635686, "percentage": 100.0, "elapsed_time": "4:59:09", "remaining_time": "0:00:00"}