Model save
Browse files- README.md +77 -0
- trainer_log.jsonl +36 -0
README.md
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: llama2
|
3 |
+
library_name: peft
|
4 |
+
tags:
|
5 |
+
- trl
|
6 |
+
- dpo
|
7 |
+
- llama-factory
|
8 |
+
- generated_from_trainer
|
9 |
+
base_model: lmsys/vicuna-7b-v1.5
|
10 |
+
model-index:
|
11 |
+
- name: Vicuna-7B-v1.5-ORPO-SALT
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# Vicuna-7B-v1.5-ORPO-SALT
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [lmsys/vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.9497
|
23 |
+
- Rewards/chosen: -0.0879
|
24 |
+
- Rewards/rejected: -0.0995
|
25 |
+
- Rewards/accuracies: 0.5164
|
26 |
+
- Rewards/margins: 0.0116
|
27 |
+
- Logps/rejected: -0.9948
|
28 |
+
- Logps/chosen: -0.8787
|
29 |
+
- Logits/rejected: -0.3581
|
30 |
+
- Logits/chosen: -0.3775
|
31 |
+
- Sft Loss: 0.8787
|
32 |
+
- Odds Ratio Loss: 0.7104
|
33 |
+
|
34 |
+
## Model description
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Intended uses & limitations
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training and evaluation data
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training procedure
|
47 |
+
|
48 |
+
### Training hyperparameters
|
49 |
+
|
50 |
+
The following hyperparameters were used during training:
|
51 |
+
- learning_rate: 5e-06
|
52 |
+
- train_batch_size: 2
|
53 |
+
- eval_batch_size: 2
|
54 |
+
- seed: 42
|
55 |
+
- gradient_accumulation_steps: 8
|
56 |
+
- total_train_batch_size: 16
|
57 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
58 |
+
- lr_scheduler_type: cosine
|
59 |
+
- lr_scheduler_warmup_steps: 0.1
|
60 |
+
- num_epochs: 3.0
|
61 |
+
|
62 |
+
### Training results
|
63 |
+
|
64 |
+
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Sft Loss | Odds Ratio Loss |
|
65 |
+
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:--------:|:---------------:|
|
66 |
+
| 1.0008 | 0.8082 | 500 | 0.9777 | -0.0907 | -0.1019 | 0.5055 | 0.0113 | -1.0193 | -0.9066 | -0.3689 | -0.3878 | 0.9066 | 0.7105 |
|
67 |
+
| 0.8458 | 1.6165 | 1000 | 0.9560 | -0.0885 | -0.1000 | 0.5191 | 0.0115 | -1.0000 | -0.8850 | -0.3578 | -0.3772 | 0.8850 | 0.7097 |
|
68 |
+
| 0.9219 | 2.4247 | 1500 | 0.9497 | -0.0879 | -0.0995 | 0.5164 | 0.0116 | -0.9948 | -0.8787 | -0.3581 | -0.3775 | 0.8787 | 0.7104 |
|
69 |
+
|
70 |
+
|
71 |
+
### Framework versions
|
72 |
+
|
73 |
+
- PEFT 0.10.0
|
74 |
+
- Transformers 4.40.1
|
75 |
+
- Pytorch 2.3.0
|
76 |
+
- Datasets 2.19.0
|
77 |
+
- Tokenizers 0.19.1
|
trainer_log.jsonl
CHANGED
@@ -151,3 +151,39 @@
|
|
151 |
{"current_steps": 1490, "total_steps": 1854, "loss": 1.0107, "accuracy": 0.512499988079071, "learning_rate": 4.607082849092523e-07, "epoch": 2.40856738735098, "percentage": 80.37, "elapsed_time": "3:59:34", "remaining_time": "0:58:31"}
|
152 |
{"current_steps": 1500, "total_steps": 1854, "loss": 0.9219, "accuracy": 0.5062500238418579, "learning_rate": 4.3649635614901405e-07, "epoch": 2.4247322691452817, "percentage": 80.91, "elapsed_time": "4:01:09", "remaining_time": "0:56:54"}
|
153 |
{"current_steps": 1500, "total_steps": 1854, "eval_loss": 0.9497246742248535, "epoch": 2.4247322691452817, "percentage": 80.91, "elapsed_time": "4:04:22", "remaining_time": "0:57:40"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
{"current_steps": 1490, "total_steps": 1854, "loss": 1.0107, "accuracy": 0.512499988079071, "learning_rate": 4.607082849092523e-07, "epoch": 2.40856738735098, "percentage": 80.37, "elapsed_time": "3:59:34", "remaining_time": "0:58:31"}
|
152 |
{"current_steps": 1500, "total_steps": 1854, "loss": 0.9219, "accuracy": 0.5062500238418579, "learning_rate": 4.3649635614901405e-07, "epoch": 2.4247322691452817, "percentage": 80.91, "elapsed_time": "4:01:09", "remaining_time": "0:56:54"}
|
153 |
{"current_steps": 1500, "total_steps": 1854, "eval_loss": 0.9497246742248535, "epoch": 2.4247322691452817, "percentage": 80.91, "elapsed_time": "4:04:22", "remaining_time": "0:57:40"}
|
154 |
+
{"current_steps": 1510, "total_steps": 1854, "loss": 0.9062, "accuracy": 0.5375000238418579, "learning_rate": 4.128769732701973e-07, "epoch": 2.4408971509395836, "percentage": 81.45, "elapsed_time": "4:05:56", "remaining_time": "0:56:01"}
|
155 |
+
{"current_steps": 1520, "total_steps": 1854, "loss": 0.9487, "accuracy": 0.5, "learning_rate": 3.8985691870233046e-07, "epoch": 2.4570620327338855, "percentage": 81.98, "elapsed_time": "4:07:28", "remaining_time": "0:54:22"}
|
156 |
+
{"current_steps": 1530, "total_steps": 1854, "loss": 0.9661, "accuracy": 0.53125, "learning_rate": 3.6744280277467904e-07, "epoch": 2.4732269145281873, "percentage": 82.52, "elapsed_time": "4:08:59", "remaining_time": "0:52:43"}
|
157 |
+
{"current_steps": 1540, "total_steps": 1854, "loss": 0.8596, "accuracy": 0.5625, "learning_rate": 3.456410618180503e-07, "epoch": 2.489391796322489, "percentage": 83.06, "elapsed_time": "4:10:33", "remaining_time": "0:51:05"}
|
158 |
+
{"current_steps": 1550, "total_steps": 1854, "loss": 0.9137, "accuracy": 0.53125, "learning_rate": 3.244579563165753e-07, "epoch": 2.5055566781167915, "percentage": 83.6, "elapsed_time": "4:12:04", "remaining_time": "0:49:26"}
|
159 |
+
{"current_steps": 1560, "total_steps": 1854, "loss": 0.9267, "accuracy": 0.5375000238418579, "learning_rate": 3.038995691099697e-07, "epoch": 2.521721559911093, "percentage": 84.14, "elapsed_time": "4:13:34", "remaining_time": "0:47:47"}
|
160 |
+
{"current_steps": 1570, "total_steps": 1854, "loss": 1.0574, "accuracy": 0.512499988079071, "learning_rate": 2.839718036468192e-07, "epoch": 2.5378864417053952, "percentage": 84.68, "elapsed_time": "4:15:07", "remaining_time": "0:46:08"}
|
161 |
+
{"current_steps": 1580, "total_steps": 1854, "loss": 1.0579, "accuracy": 0.4749999940395355, "learning_rate": 2.646803822893723e-07, "epoch": 2.5540513234996967, "percentage": 85.22, "elapsed_time": "4:16:39", "remaining_time": "0:44:30"}
|
162 |
+
{"current_steps": 1590, "total_steps": 1854, "loss": 0.9704, "accuracy": 0.512499988079071, "learning_rate": 2.460308446703341e-07, "epoch": 2.570216205293999, "percentage": 85.76, "elapsed_time": "4:18:11", "remaining_time": "0:42:52"}
|
163 |
+
{"current_steps": 1600, "total_steps": 1854, "loss": 0.9107, "accuracy": 0.5874999761581421, "learning_rate": 2.2802854610213143e-07, "epoch": 2.5863810870883004, "percentage": 86.3, "elapsed_time": "4:19:43", "remaining_time": "0:41:13"}
|
164 |
+
{"current_steps": 1610, "total_steps": 1854, "loss": 0.9881, "accuracy": 0.5375000238418579, "learning_rate": 2.106786560391072e-07, "epoch": 2.6025459688826027, "percentage": 86.84, "elapsed_time": "4:21:14", "remaining_time": "0:39:35"}
|
165 |
+
{"current_steps": 1620, "total_steps": 1854, "loss": 0.9563, "accuracy": 0.5, "learning_rate": 1.9398615659308255e-07, "epoch": 2.6187108506769046, "percentage": 87.38, "elapsed_time": "4:22:47", "remaining_time": "0:37:57"}
|
166 |
+
{"current_steps": 1630, "total_steps": 1854, "loss": 0.9756, "accuracy": 0.5, "learning_rate": 1.7795584110272184e-07, "epoch": 2.6348757324712064, "percentage": 87.92, "elapsed_time": "4:24:25", "remaining_time": "0:36:20"}
|
167 |
+
{"current_steps": 1640, "total_steps": 1854, "loss": 0.9294, "accuracy": 0.4749999940395355, "learning_rate": 1.6259231275709636e-07, "epoch": 2.6510406142655083, "percentage": 88.46, "elapsed_time": "4:26:00", "remaining_time": "0:34:42"}
|
168 |
+
{"current_steps": 1650, "total_steps": 1854, "loss": 0.9021, "accuracy": 0.5375000238418579, "learning_rate": 1.478999832738548e-07, "epoch": 2.66720549605981, "percentage": 89.0, "elapsed_time": "4:27:32", "remaining_time": "0:33:04"}
|
169 |
+
{"current_steps": 1660, "total_steps": 1854, "loss": 0.8916, "accuracy": 0.512499988079071, "learning_rate": 1.338830716323769e-07, "epoch": 2.683370377854112, "percentage": 89.54, "elapsed_time": "4:29:08", "remaining_time": "0:31:27"}
|
170 |
+
{"current_steps": 1670, "total_steps": 1854, "loss": 0.9171, "accuracy": 0.518750011920929, "learning_rate": 1.205456028622723e-07, "epoch": 2.699535259648414, "percentage": 90.08, "elapsed_time": "4:30:36", "remaining_time": "0:29:48"}
|
171 |
+
{"current_steps": 1680, "total_steps": 1854, "loss": 0.9016, "accuracy": 0.5874999761581421, "learning_rate": 1.0789140688756805e-07, "epoch": 2.7157001414427158, "percentage": 90.61, "elapsed_time": "4:32:08", "remaining_time": "0:28:11"}
|
172 |
+
{"current_steps": 1690, "total_steps": 1854, "loss": 0.9688, "accuracy": 0.44999998807907104, "learning_rate": 9.592411742693098e-08, "epoch": 2.7318650232370176, "percentage": 91.15, "elapsed_time": "4:33:36", "remaining_time": "0:26:33"}
|
173 |
+
{"current_steps": 1700, "total_steps": 1854, "loss": 0.894, "accuracy": 0.59375, "learning_rate": 8.464717095022168e-08, "epoch": 2.7480299050313195, "percentage": 91.69, "elapsed_time": "4:35:08", "remaining_time": "0:24:55"}
|
174 |
+
{"current_steps": 1710, "total_steps": 1854, "loss": 0.9886, "accuracy": 0.4437499940395355, "learning_rate": 7.406380569169841e-08, "epoch": 2.7641947868256214, "percentage": 92.23, "elapsed_time": "4:36:41", "remaining_time": "0:23:17"}
|
175 |
+
{"current_steps": 1720, "total_steps": 1854, "loss": 0.9715, "accuracy": 0.5, "learning_rate": 6.417706072013808e-08, "epoch": 2.7803596686199232, "percentage": 92.77, "elapsed_time": "4:38:15", "remaining_time": "0:21:40"}
|
176 |
+
{"current_steps": 1730, "total_steps": 1854, "loss": 0.9602, "accuracy": 0.5, "learning_rate": 5.498977506615294e-08, "epoch": 2.796524550414225, "percentage": 93.31, "elapsed_time": "4:39:51", "remaining_time": "0:20:03"}
|
177 |
+
{"current_steps": 1740, "total_steps": 1854, "loss": 1.0182, "accuracy": 0.5625, "learning_rate": 4.6504586906947756e-08, "epoch": 2.812689432208527, "percentage": 93.85, "elapsed_time": "4:41:24", "remaining_time": "0:18:26"}
|
178 |
+
{"current_steps": 1750, "total_steps": 1854, "loss": 1.0459, "accuracy": 0.46875, "learning_rate": 3.8723932808754914e-08, "epoch": 2.828854314002829, "percentage": 94.39, "elapsed_time": "4:43:00", "remaining_time": "0:16:49"}
|
179 |
+
{"current_steps": 1760, "total_steps": 1854, "loss": 0.9285, "accuracy": 0.543749988079071, "learning_rate": 3.1650047027158014e-08, "epoch": 2.8450191957971307, "percentage": 94.93, "elapsed_time": "4:44:35", "remaining_time": "0:15:12"}
|
180 |
+
{"current_steps": 1770, "total_steps": 1854, "loss": 0.8928, "accuracy": 0.5249999761581421, "learning_rate": 2.5284960865517848e-08, "epoch": 2.8611840775914326, "percentage": 95.47, "elapsed_time": "4:46:11", "remaining_time": "0:13:34"}
|
181 |
+
{"current_steps": 1780, "total_steps": 1854, "loss": 0.8926, "accuracy": 0.59375, "learning_rate": 1.9630502091670388e-08, "epoch": 2.8773489593857344, "percentage": 96.01, "elapsed_time": "4:47:43", "remaining_time": "0:11:57"}
|
182 |
+
{"current_steps": 1790, "total_steps": 1854, "loss": 0.8723, "accuracy": 0.543749988079071, "learning_rate": 1.4688294413074677e-08, "epoch": 2.8935138411800363, "percentage": 96.55, "elapsed_time": "4:49:13", "remaining_time": "0:10:20"}
|
183 |
+
{"current_steps": 1800, "total_steps": 1854, "loss": 0.9156, "accuracy": 0.5062500238418579, "learning_rate": 1.0459757010556626e-08, "epoch": 2.909678722974338, "percentage": 97.09, "elapsed_time": "4:50:46", "remaining_time": "0:08:43"}
|
184 |
+
{"current_steps": 1810, "total_steps": 1854, "loss": 0.9617, "accuracy": 0.48124998807907104, "learning_rate": 6.94610413078306e-09, "epoch": 2.92584360476864, "percentage": 97.63, "elapsed_time": "4:52:14", "remaining_time": "0:07:06"}
|
185 |
+
{"current_steps": 1820, "total_steps": 1854, "loss": 0.8634, "accuracy": 0.606249988079071, "learning_rate": 4.14834473758563e-09, "epoch": 2.942008486562942, "percentage": 98.17, "elapsed_time": "4:53:49", "remaining_time": "0:05:29"}
|
186 |
+
{"current_steps": 1830, "total_steps": 1854, "loss": 0.881, "accuracy": 0.5562499761581421, "learning_rate": 2.067282222230349e-09, "epoch": 2.9581733683572438, "percentage": 98.71, "elapsed_time": "4:55:28", "remaining_time": "0:03:52"}
|
187 |
+
{"current_steps": 1840, "total_steps": 1854, "loss": 0.9018, "accuracy": 0.5625, "learning_rate": 7.035141727212979e-10, "epoch": 2.9743382501515456, "percentage": 99.24, "elapsed_time": "4:56:57", "remaining_time": "0:02:15"}
|
188 |
+
{"current_steps": 1850, "total_steps": 1854, "loss": 1.097, "accuracy": 0.543749988079071, "learning_rate": 5.743220219761592e-11, "epoch": 2.9905031319458475, "percentage": 99.78, "elapsed_time": "4:58:32", "remaining_time": "0:00:38"}
|
189 |
+
{"current_steps": 1854, "total_steps": 1854, "epoch": 2.9969690846635686, "percentage": 100.0, "elapsed_time": "4:59:09", "remaining_time": "0:00:00"}
|