charlesfrye's picture
Model save
49316c1 verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: ap-dHsT9h4tktkDaOuJtOWql8
    results: []

ap-dHsT9h4tktkDaOuJtOWql8

This model is a fine-tuned version of openai/whisper-large-v3 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3711
  • Model Preparation Time: 0.0225
  • Wer: 0.1160

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 400
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Wer
0.3495 0.9791 41 0.3525 0.0225 0.1237
0.2341 1.9791 82 0.2712 0.0225 0.1079
0.1627 2.9791 123 0.2690 0.0225 0.1042
0.0835 3.9791 164 0.2909 0.0225 0.1058
0.0575 4.9791 205 0.3031 0.0225 0.1218
0.0388 5.9791 246 0.3359 0.0225 0.1098
0.0277 6.9791 287 0.3808 0.0225 0.1072
0.0203 7.9791 328 0.4040 0.0225 0.1059
0.0263 8.9791 369 0.3793 0.0225 0.1184
0.0253 9.9791 410 0.3711 0.0225 0.1160

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0