AMPLIFY_120M / README.md
qfournier's picture
initial commit
f9e286d verified
|
raw
history blame
5.61 kB
metadata
license: mit
datasets:
  - drug-discovery/UR100P
language:
  - en
tags:
  - biology

AMPLIFY

AMPLIFY is an efficient, state-of-the-art protein language model pre-trained using masked language modeling on UniRef100, OAS, and SCOP (UR100P). AMPLIFY can generate residue and protein embeddings, suggest mutations, differentiate disordered proteins from non-protein sequences, and much more. AMPLIFY is available in two sizes, 120M and 350M parameters, with the _base models not extended beyond 512 residues (Stage 1). The model architecture and pre-training procedure are detailed below. For more details, please refer to the accompanying paper.

Model Descritpion

AMPLIFY 120M AMPLIFY 350M
hidden-size 640 960
num-hidden-layers 24 32
num-attention-heads 10 15
intermediate-size 2560 3840
max-position-embeddings 2048 2048
vocab-size 27 27
rope-theta 10000 10000
dropout-prob 0 0
embedding-init-range 0.02 0.02
norm-eps 1.0e-05 1.0e-05
hidden-act swiglu swiglu
pre-activation-layer-norm true true
layer-norm-after-embedding false false
layer-norm-before-last-layer true true
rms-norm true true
ffn-bias false false
attn-bias false false

Training Descritpion

Stage 1 Stage 2
dataset UR100P UR100P
max-steps 1000000 25000 (120M) or 50000 (350M)
max-length 512 2048
optimizer adamw adamw
lr 0.001 0.001
betas (0.9, 0.95) (0.9, 0.95)
eps 1.0e-08 1.0e-08
weight-decay 0.01 0.01
scheduler cosinedecay none
warmup-steps 1,000 none
final-step 900,000 none
warmup-steps 1,000 none
gradient-clipping 1.0 1.0
tf32 true true
mixed-precision bf16 bf16
padding max-length max-length
random-truncate true true
mask-probability 0.15 0.15
total-batch-size 4096 4096
deepspeed true true
zero-stage 3 3

Get Started

from transformers import AutoModel
from transformers import AutoTokenizer
from datasets import load_dataset

# Load AMPLIFY and tokenizer
model = AutoModel.from_pretrained("drug-discovery/AMPLIFY_350M", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("drug-discovery/AMPLIFY_350M", trust_remote_code=True)

# Move the model to GPU (required due to Flash Attention)
model = model.to("cuda")

# Load the UniProt validation set
dataset = load_dataset("drug-discovery/UR100P", data_dir="UniProt", split="test")

for sample in dataset:
    # Protein
    print("Sample: ", sample["name"], sample["sequence"])

    # Tokenize the protein
    input = tokenizer.encode(sample["sequence"], return_tensors="pt")
    print("Input: ", input)

    # Move to the GPU and make a prediction
    input = input.to("cuda")
    output = model(input)
    print("Output: ", output)

    break

Citations

If you find the models useful in your research, we ask that you cite the paper:

@article{Fournier2024.09.23.614603,
    title        = {Protein Language Models: Is Scaling Necessary?},
    author       = {Fournier, Quentin and Vernon, Robert M. and van der Sloot, Almer and Schulz, Benjamin and Chandar, Sarath and Langmead, Christopher James},
    year         = {2024},
    journal      = {bioRxiv},
    publisher    = {Cold Spring Harbor Laboratory},
    doi          = {10.1101/2024.09.23.614603},
    url          = {https://www.biorxiv.org/content/early/2024/09/23/2024.09.23.614603},
    elocation-id = {2024.09.23.614603},
    eprint       = {https://www.biorxiv.org/content/early/2024/09/23/2024.09.23.614603.full.pdf}
}