metadata
license: mit
base_model: microsoft/mdeberta-v3-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: Prompt-Guard-finetuned-ctf-86M
results: []
Prompt-Guard-finetuned-ctf-86M
This model is a fine-tuned version of microsoft/mdeberta-v3-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1377
- Accuracy: 0.9376
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.2424 | 1.0 | 293 | 0.1377 | 0.9376 |
0.1436 | 2.0 | 586 | 0.1565 | 0.9487 |
0.108 | 3.0 | 879 | 0.2244 | 0.9462 |
0.0806 | 4.0 | 1172 | 0.2356 | 0.9462 |
0.0548 | 5.0 | 1465 | 0.2658 | 0.9470 |
0.0473 | 6.0 | 1758 | 0.2437 | 0.9521 |
0.0339 | 7.0 | 2051 | 0.2838 | 0.9470 |
0.0199 | 8.0 | 2344 | 0.2974 | 0.9530 |
0.0193 | 9.0 | 2637 | 0.3392 | 0.9487 |
0.0176 | 10.0 | 2930 | 0.3296 | 0.9513 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.5.0+cu124
- Datasets 2.18.0
- Tokenizers 0.19.1