|
--- |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: results |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# results |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.0216 |
|
- Wer: 1.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 30 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-------:|:----:|:---------------:|:---:| |
|
| 6.0993 | 0.5714 | 100 | 3.1919 | 1.0 | |
|
| 2.9332 | 1.1429 | 200 | 3.0675 | 1.0 | |
|
| 2.878 | 1.7143 | 300 | 3.1538 | 1.0 | |
|
| 2.873 | 2.2857 | 400 | 2.9688 | 1.0 | |
|
| 2.8574 | 2.8571 | 500 | 3.0386 | 1.0 | |
|
| 2.859 | 3.4286 | 600 | 3.0947 | 1.0 | |
|
| 2.8631 | 4.0 | 700 | 3.2471 | 1.0 | |
|
| 2.8612 | 4.5714 | 800 | 2.9827 | 1.0 | |
|
| 2.8592 | 5.1429 | 900 | 3.0277 | 1.0 | |
|
| 2.8617 | 5.7143 | 1000 | 3.1227 | 1.0 | |
|
| 2.8644 | 6.2857 | 1100 | 3.0502 | 1.0 | |
|
| 2.8618 | 6.8571 | 1200 | 3.0055 | 1.0 | |
|
| 2.8638 | 7.4286 | 1300 | 3.0646 | 1.0 | |
|
| 2.8608 | 8.0 | 1400 | 3.1780 | 1.0 | |
|
| 2.8585 | 8.5714 | 1500 | 2.9719 | 1.0 | |
|
| 2.8624 | 9.1429 | 1600 | 3.0521 | 1.0 | |
|
| 2.8588 | 9.7143 | 1700 | 3.0839 | 1.0 | |
|
| 2.8594 | 10.2857 | 1800 | 3.1120 | 1.0 | |
|
| 2.8566 | 10.8571 | 1900 | 2.9648 | 1.0 | |
|
| 2.8587 | 11.4286 | 2000 | 3.0812 | 1.0 | |
|
| 2.8588 | 12.0 | 2100 | 3.1690 | 1.0 | |
|
| 2.8607 | 12.5714 | 2200 | 2.9951 | 1.0 | |
|
| 2.8561 | 13.1429 | 2300 | 3.0317 | 1.0 | |
|
| 2.8565 | 13.7143 | 2400 | 3.0880 | 1.0 | |
|
| 2.8638 | 14.2857 | 2500 | 3.0978 | 1.0 | |
|
| 2.8563 | 14.8571 | 2600 | 2.9716 | 1.0 | |
|
| 2.8592 | 15.4286 | 2700 | 3.0461 | 1.0 | |
|
| 2.859 | 16.0 | 2800 | 3.1339 | 1.0 | |
|
| 2.8584 | 16.5714 | 2900 | 3.0304 | 1.0 | |
|
| 2.8562 | 17.1429 | 3000 | 2.9964 | 1.0 | |
|
| 2.8574 | 17.7143 | 3100 | 3.0665 | 1.0 | |
|
| 2.8609 | 18.2857 | 3200 | 3.1042 | 1.0 | |
|
| 2.8564 | 18.8571 | 3300 | 2.9905 | 1.0 | |
|
| 2.8601 | 19.4286 | 3400 | 3.0030 | 1.0 | |
|
| 2.8562 | 20.0 | 3500 | 3.1000 | 1.0 | |
|
| 2.8565 | 20.5714 | 3600 | 3.0409 | 1.0 | |
|
| 2.8566 | 21.1429 | 3700 | 2.9837 | 1.0 | |
|
| 2.8577 | 21.7143 | 3800 | 3.0294 | 1.0 | |
|
| 2.8554 | 22.2857 | 3900 | 3.0737 | 1.0 | |
|
| 2.854 | 22.8571 | 4000 | 3.0101 | 1.0 | |
|
| 2.8556 | 23.4286 | 4100 | 3.0014 | 1.0 | |
|
| 2.8557 | 24.0 | 4200 | 3.0693 | 1.0 | |
|
| 2.8531 | 24.5714 | 4300 | 3.0308 | 1.0 | |
|
| 2.8552 | 25.1429 | 4400 | 3.0050 | 1.0 | |
|
| 2.8536 | 25.7143 | 4500 | 3.0215 | 1.0 | |
|
| 2.855 | 26.2857 | 4600 | 3.0509 | 1.0 | |
|
| 2.8513 | 26.8571 | 4700 | 3.0163 | 1.0 | |
|
| 2.8533 | 27.4286 | 4800 | 3.0170 | 1.0 | |
|
| 2.8552 | 28.0 | 4900 | 3.0345 | 1.0 | |
|
| 2.8521 | 28.5714 | 5000 | 3.0259 | 1.0 | |
|
| 2.8522 | 29.1429 | 5100 | 3.0219 | 1.0 | |
|
| 2.8543 | 29.7143 | 5200 | 3.0216 | 1.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.1 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|