|
--- |
|
tags: |
|
- spacy |
|
- token-classification |
|
language: |
|
- en |
|
license: mit |
|
model-index: |
|
- name: en_Coff_Ev1 |
|
results: |
|
- task: |
|
name: NER |
|
type: token-classification |
|
metrics: |
|
- name: NER Precision |
|
type: precision |
|
value: 0.9922248804 |
|
- name: NER Recall |
|
type: recall |
|
value: 0.9916317992 |
|
- name: NER F Score |
|
type: f_score |
|
value: 0.9919282511 |
|
--- |
|
# COFF-E |
|
*Your Coffee at the Speed of Sound*<br><br> |
|
This model in an implementation that can process coffee drinks from typed or text-to-speech applications. |
|
|
|
**When citing, please us all authors below** |
|
|
|
| Feature | Description | |
|
| --- | --- | |
|
| **Name** | `en_Coff_Ev1` | |
|
| **Version** | `1.1.5` | |
|
| **spaCy** | `>=3.4.3,<3.5.0` | |
|
| **Default Pipeline** | `tok2vec`, `ner` | |
|
| **Components** | `tok2vec`, `ner` | |
|
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | |
|
| **Sources** | n/a | |
|
| **License** | `MIT` | |
|
| **Author** | [Chris Bruinsma,Iris Chi,Jack Felciano,Jeffrey Li,Dustin Paden]() | |
|
|
|
### Label Scheme |
|
|
|
<details> |
|
|
|
<summary>View label scheme (18 labels for 1 components)</summary> |
|
|
|
| Component | Labels | |
|
| --- | --- | |
|
| **`ner`** | `Anti`, `Brew Style`, `add-on`, `drink`, `extra`, `hot breakfast`, `milk`, `milk texture`, `pastry`, `pump quantity`, `roast`, `shot quality`, `shot quantity`, `size`, `syrup`, `temperature`, `toppings`, `upside-down` | |
|
|
|
</details> |
|
|
|
### Accuracy |
|
|
|
| Type | Score | |
|
| --- | --- | |
|
| `ENTS_F` | 99.19 | |
|
| `ENTS_P` | 99.22 | |
|
| `ENTS_R` | 99.16 | |
|
| `TOK2VEC_LOSS` | 58625.70 | |
|
| `NER_LOSS` | 168185.77 | |