|
--- |
|
license: llama2 |
|
library_name: peft |
|
--- |
|
|
|
|
|
# RepLLaMA-7B-Document |
|
|
|
[Fine-Tuning LLaMA for Multi-Stage Text Retrieval](https://arxiv.org/abs/2310.08319). |
|
Xueguang Ma, Liang Wang, Nan Yang, Furu Wei, Jimmy Lin, arXiv 2023 |
|
|
|
This model is fine-tuned from LLaMA-2-7B using LoRA and the embedding size is 4096, the model take input length upto 2048 tokens. |
|
|
|
## Training Data |
|
The model is fine-tuned on the training split of [MS MARCO Document Ranking](https://microsoft.github.io/msmarco/Datasets) datasets for 1 epoch. |
|
Please check our paper for details. |
|
|
|
|
|
## Usage |
|
|
|
Below is an example to encode a query and a document, and then compute their similarity using their embedding. |
|
|
|
```python |
|
import torch |
|
from transformers import AutoModel, AutoTokenizer |
|
from peft import PeftModel, PeftConfig |
|
|
|
def get_model(peft_model_name): |
|
config = PeftConfig.from_pretrained(peft_model_name) |
|
base_model = AutoModel.from_pretrained(config.base_model_name_or_path) |
|
model = PeftModel.from_pretrained(base_model, peft_model_name) |
|
model = model.merge_and_unload() |
|
model.eval() |
|
return model |
|
|
|
# Load the tokenizer and model |
|
tokenizer = AutoTokenizer.from_pretrained('meta-llama/Llama-2-7b-hf') |
|
model = get_model('castorini/repllama-v1-7b-lora-doc') |
|
|
|
# Define query and document inputs |
|
query = "What is llama?" |
|
title = "Llama" |
|
url = "https://en.wikipedia.org/wiki/Llama" |
|
document = "The llama is a domesticated South American camelid, widely used as a meat and pack animal by Andean cultures since the pre-Columbian era." |
|
query_input = tokenizer(f'query: {query}</s>', return_tensors='pt') |
|
document_input = tokenizer(f'passage: {url} {title} {document}</s>', return_tensors='pt') |
|
|
|
# Run the model forward to compute embeddings and query-document similarity score |
|
with torch.no_grad(): |
|
# compute query embedding |
|
query_outputs = model(**query_input) |
|
query_embedding = query_outputs.last_hidden_state[0][-1] |
|
query_embedding = torch.nn.functional.normalize(query_embedding, p=2, dim=0) |
|
|
|
# compute document embedding |
|
document_outputs = model(**document_input) |
|
document_embeddings = document_outputs.last_hidden_state[0][-1] |
|
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=0) |
|
|
|
# compute similarity score |
|
score = torch.dot(query_embedding, document_embeddings) |
|
print(score) |
|
|
|
``` |
|
|
|
## Citation |
|
|
|
If you find our paper or models helpful, please consider cite as follows: |
|
|
|
``` |
|
@article{rankllama, |
|
title={Fine-Tuning LLaMA for Multi-Stage Text Retrieval}, |
|
author={Xueguang Ma and Liang Wang and Nan Yang and Furu Wei and Jimmy Lin}, |
|
year={2023}, |
|
journal={arXiv:2310.08319}, |
|
} |
|
``` |