|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- custom |
|
model-index: |
|
- name: xlm_r-joint_nlu-custom_ds |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# xlm_r-joint_nlu-custom_ds |
|
|
|
This model was trained from scratch on the custom dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0312 |
|
- Intent Accuracy: 1.0 |
|
- Intent F1 Macro: 1.0 |
|
- Slot F1: 0.9506 |
|
- Semantic Accuracy: 0.9474 |
|
|
|
Evaluation on the test set: |
|
- Intent Accuracy: 1.0 |
|
- Slot F1: 0.9506294471811714 |
|
- Semantic Accuracy: 0.9473684210526315 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Intent Accuracy | Intent F1 Macro | Slot F1 | Semantic Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------------:|:---------------:|:-------:|:-----------------:| |
|
| No log | 1.0 | 47 | 2.1385 | 0.6809 | 0.4650 | 0.1429 | 0.1809 | |
|
| No log | 2.0 | 94 | 1.0050 | 0.9043 | 0.8890 | 0.2806 | 0.2128 | |
|
| No log | 3.0 | 141 | 0.4169 | 0.9787 | 0.9582 | 0.3632 | 0.2660 | |
|
| No log | 4.0 | 188 | 0.2661 | 0.9894 | 0.9798 | 0.6908 | 0.5745 | |
|
| No log | 5.0 | 235 | 0.2036 | 0.9894 | 0.9798 | 0.7454 | 0.5532 | |
|
| No log | 6.0 | 282 | 0.1547 | 0.9894 | 0.9881 | 0.7699 | 0.6489 | |
|
| No log | 7.0 | 329 | 0.1094 | 1.0 | 1.0 | 0.8216 | 0.6596 | |
|
| No log | 8.0 | 376 | 0.1061 | 1.0 | 1.0 | 0.9080 | 0.7128 | |
|
| No log | 9.0 | 423 | 0.0639 | 1.0 | 1.0 | 0.9575 | 0.8511 | |
|
| No log | 10.0 | 470 | 0.0571 | 1.0 | 1.0 | 0.9597 | 0.8511 | |
|
| 0.7099 | 11.0 | 517 | 0.0527 | 1.0 | 1.0 | 0.9763 | 0.8723 | |
|
| 0.7099 | 12.0 | 564 | 0.0408 | 1.0 | 1.0 | 0.9708 | 0.8723 | |
|
| 0.7099 | 13.0 | 611 | 0.0415 | 1.0 | 1.0 | 0.9899 | 0.9043 | |
|
| 0.7099 | 14.0 | 658 | 0.0347 | 1.0 | 1.0 | 0.9661 | 0.9149 | |
|
| 0.7099 | 15.0 | 705 | 0.0388 | 1.0 | 1.0 | 0.9899 | 0.9149 | |
|
| 0.7099 | 16.0 | 752 | 0.0333 | 1.0 | 1.0 | 0.9983 | 0.9255 | |
|
| 0.7099 | 17.0 | 799 | 0.0533 | 1.0 | 1.0 | 0.9899 | 0.8936 | |
|
| 0.7099 | 18.0 | 846 | 0.0404 | 1.0 | 1.0 | 0.9899 | 0.9043 | |
|
| 0.7099 | 19.0 | 893 | 0.0408 | 1.0 | 1.0 | 0.9805 | 0.9043 | |
|
| 0.7099 | 20.0 | 940 | 0.0387 | 1.0 | 1.0 | 0.9899 | 0.9255 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.14.7 |
|
- Tokenizers 0.15.0 |
|
|