cartesinus's picture
Update README.md
959b8f5
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - iva_mt_wslot
metrics:
  - bleu
model-index:
  - name: iva_mt_wslot-m2m100_418M-en-hi
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: iva_mt_wslot
          type: iva_mt_wslot
          config: en-hi
          split: validation
          args: en-hi
        metrics:
          - name: Bleu
            type: bleu
            value: 66.566

iva_mt_wslot-m2m100_418M-en-hi

This model is a fine-tuned version of facebook/m2m100_418M on the iva_mt_wslot dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0128
  • Bleu: 66.566
  • Gen Len: 21.9557

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 7
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Gen Len
0.0173 1.0 1676 0.0143 62.0504 21.7847
0.0116 2.0 3352 0.0127 64.7753 22.0289
0.0085 3.0 5028 0.0123 65.6406 21.8877
0.0064 4.0 6704 0.0123 66.4173 21.9532
0.0048 5.0 8380 0.0125 66.2846 21.8706
0.0037 6.0 10056 0.0127 66.4123 21.8911
0.003 7.0 11732 0.0128 66.566 21.9557

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3

Citation

If you use this model, please cite the following:

@article{Sowanski2023SlotLI,
  title={Slot Lost in Translation? Not Anymore: A Machine Translation Model for Virtual Assistants with Type-Independent Slot Transfer},
  author={Marcin Sowanski and Artur Janicki},
  journal={2023 30th International Conference on Systems, Signals and Image Processing (IWSSIP)},
  year={2023},
  pages={1-5}
}