|
--- |
|
language: |
|
- en |
|
license: mit |
|
datasets: |
|
- cardiffnlp/x_sensitive |
|
metrics: |
|
- f1 |
|
widget: |
|
- text: Call me today to earn some money mofos! |
|
pipeline_tag: text-classification |
|
--- |
|
|
|
# twitter-roberta-base-sensitive-binary |
|
|
|
This is a RoBERTa-large model trained on 154M tweets until the end of December 2022 and finetuned for detecting sensitive content (multilabel classification) on the [_X-Sensitive_](https://huggingface.co/datasets/cardiffnlp/x_sensitive) dataset. |
|
The original Twitter-based RoBERTa model can be found [here](https://huggingface.co/cardiffnlp/twitter-roberta-large-2022-154m). |
|
|
|
|
|
|
|
## Labels |
|
``` |
|
"id2label": { |
|
"0": "conflictual", |
|
"1": "profanity", |
|
"2": "sex", |
|
"3": "drugs", |
|
"4": "selfharm", |
|
"5": "spam" |
|
} |
|
``` |
|
|
|
## Full classification example |
|
|
|
```python |
|
from transformers import pipeline |
|
|
|
pipe = pipeline(model='cardiffnlp/twitter-roberta-large-sensitive-multilabel') |
|
text = "Call me today to earn some money mofos!" |
|
|
|
pipe(text) |
|
``` |
|
Output: |
|
|
|
``` |
|
[[{'label': 'conflictual', 'score': 0.004052792210131884}, |
|
{'label': 'profanity', 'score': 0.9994163513183594}, |
|
{'label': 'sex', 'score': 0.0066294302232563496}, |
|
{'label': 'drugs', 'score': 0.0027938704006373882}, |
|
{'label': 'selfharm', 'score': 0.002117963507771492}, |
|
{'label': 'spam', 'score': 0.992584228515625}]] |
|
``` |
|
|
|
|
|
|
|
## BibTeX entry and citation info |
|
|
|
TBA |