cardiffnlp
commited on
Commit
β’
dafba98
1
Parent(s):
12c1452
Readme
Browse files- .ipynb_checkpoints/README-checkpoint.md +77 -0
- README.md +27 -1
.ipynb_checkpoints/README-checkpoint.md
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Twitter-roBERTa-base
|
2 |
+
|
3 |
+
This is a roBERTa-base model trained on ~58M tweets, described and evaluated in the [_TweetEval_ benchmark (Findings of EMNLP 2020)](https://arxiv.org/pdf/2010.12421.pdf). To evaluate this and other LMs on Twitter-specific data, please refer to the [Tweeteval official repository](https://github.com/cardiffnlp/tweeteval).
|
4 |
+
|
5 |
+
## Example Masked Language Model
|
6 |
+
|
7 |
+
```python
|
8 |
+
from transformers import pipeline, AutoTokenizer
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
MODEL = "cardiffnlp/twitter-roberta-base"
|
12 |
+
fill_mask = pipeline("fill-mask", model=MODEL, tokenizer=MODEL)
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
14 |
+
|
15 |
+
def print_candidates():
|
16 |
+
for i in range(5):
|
17 |
+
token = tokenizer.decode(candidates[i]['token'])
|
18 |
+
score = np.round(candidates[i]['score'], 4)
|
19 |
+
print(f"{i+1}) {token} {score}")
|
20 |
+
|
21 |
+
texts = [
|
22 |
+
"I am so <mask> π",
|
23 |
+
"I am so <mask> π’"
|
24 |
+
]
|
25 |
+
for text in texts:
|
26 |
+
print(f"{'-'*30}\n{text}")
|
27 |
+
candidates = fill_mask(text)
|
28 |
+
print_candidates()
|
29 |
+
```
|
30 |
+
|
31 |
+
Output:
|
32 |
+
|
33 |
+
```
|
34 |
+
------------------------------
|
35 |
+
I am so <mask> π
|
36 |
+
1) happy 0.402
|
37 |
+
2) excited 0.1441
|
38 |
+
3) proud 0.143
|
39 |
+
4) grateful 0.0669
|
40 |
+
5) blessed 0.0334
|
41 |
+
------------------------------
|
42 |
+
I am so <mask> π’
|
43 |
+
1) sad 0.2641
|
44 |
+
2) sorry 0.1605
|
45 |
+
3) tired 0.138
|
46 |
+
4) sick 0.0278
|
47 |
+
5) hungry 0.0232
|
48 |
+
```
|
49 |
+
|
50 |
+
## Example Feature Extraction
|
51 |
+
|
52 |
+
```python
|
53 |
+
from transformers import AutoTokenizer, AutoModel, TFAutoModel
|
54 |
+
import numpy as np
|
55 |
+
|
56 |
+
MODEL = "cardiffnlp/twitter-roberta-base"
|
57 |
+
text = "Good night π"
|
58 |
+
|
59 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
60 |
+
|
61 |
+
# Pytorch
|
62 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
63 |
+
model = AutoModel.from_pretrained(MODEL)
|
64 |
+
features = model(**encoded_input)
|
65 |
+
features = features[0].detach().cpu().numpy()
|
66 |
+
features_mean = np.mean(features[0], axis=0)
|
67 |
+
#features_max = np.max(features[0], axis=0)
|
68 |
+
|
69 |
+
# # Tensorflow
|
70 |
+
# encoded_input = tokenizer(text, return_tensors='tf')
|
71 |
+
# model = TFAutoModel.from_pretrained(MODEL)
|
72 |
+
# features = model(encoded_input)
|
73 |
+
# features = features[0].numpy()
|
74 |
+
# features_mean = np.mean(features[0], axis=0)
|
75 |
+
# #features_max = np.max(features[0], axis=0)
|
76 |
+
|
77 |
+
```
|
README.md
CHANGED
@@ -48,4 +48,30 @@ I am so <mask> π’
|
|
48 |
```
|
49 |
|
50 |
## Example Feature Extraction
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
```
|
49 |
|
50 |
## Example Feature Extraction
|
51 |
+
|
52 |
+
```python
|
53 |
+
from transformers import AutoTokenizer, AutoModel, TFAutoModel
|
54 |
+
import numpy as np
|
55 |
+
|
56 |
+
MODEL = "cardiffnlp/twitter-roberta-base"
|
57 |
+
text = "Good night π"
|
58 |
+
|
59 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
60 |
+
|
61 |
+
# Pytorch
|
62 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
63 |
+
model = AutoModel.from_pretrained(MODEL)
|
64 |
+
features = model(**encoded_input)
|
65 |
+
features = features[0].detach().cpu().numpy()
|
66 |
+
features_mean = np.mean(features[0], axis=0)
|
67 |
+
#features_max = np.max(features[0], axis=0)
|
68 |
+
|
69 |
+
# # Tensorflow
|
70 |
+
# encoded_input = tokenizer(text, return_tensors='tf')
|
71 |
+
# model = TFAutoModel.from_pretrained(MODEL)
|
72 |
+
# features = model(encoded_input)
|
73 |
+
# features = features[0].numpy()
|
74 |
+
# features_mean = np.mean(features[0], axis=0)
|
75 |
+
# #features_max = np.max(features[0], axis=0)
|
76 |
+
|
77 |
+
```
|