librarian-bot's picture
Librarian Bot: Add base_model information to model
41b50a9
|
raw
history blame
3.29 kB
metadata
datasets:
  - cardiffnlp/tweet_topic_multi
metrics:
  - f1
  - accuracy
pipeline_tag: text-classification
widget:
  - text: >-
      I'm sure the {@Tampa Bay Lightning@} would’ve rather faced the Flyers but
      man does their experience versus the Blue Jackets this year and last help
      them a lot versus this Islanders team. Another meat grinder upcoming for
      the good guys
    example_title: Example 1
  - text: >-
      Love to take night time bike rides at the jersey shore. Seaside Heights
      boardwalk. Beautiful weather. Wishing everyone a safe Labor Day weekend in
      the US.
    example_title: Example 2
base_model: cardiffnlp/twitter-roberta-base-dec2021
model-index:
  - name: cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-multi-all
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: cardiffnlp/tweet_topic_multi
          type: cardiffnlp/tweet_topic_multi
          split: test_2021
          args: cardiffnlp/tweet_topic_multi
        metrics:
          - type: f1
            value: 0.7647668393782383
            name: F1
          - type: f1_macro
            value: 0.6187022581213811
            name: F1 (macro)
          - type: accuracy
            value: 0.5485407980941036
            name: Accuracy

cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-multi-all

This model is a fine-tuned version of cardiffnlp/twitter-roberta-base-dec2021 on the tweet_topic_multi. This model is fine-tuned on train_all split and validated on test_2021 split of tweet_topic. Fine-tuning script can be found here. It achieves the following results on the test_2021 set:

  • F1 (micro): 0.7647668393782383
  • F1 (macro): 0.6187022581213811
  • Accuracy: 0.5485407980941036

Usage

import math
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

def sigmoid(x):
  return 1 / (1 + math.exp(-x))
  
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-multi-all")
model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-multi-all", problem_type="multi_label_classification")
model.eval()
class_mapping = model.config.id2label

with torch.no_grad():
  text = #NewVideo Cray Dollas- Water- Ft. Charlie Rose- (Official Music Video)- {{URL}} via {@YouTube@} #watchandlearn {{USERNAME}}
  tokens = tokenizer(text, return_tensors='pt')
  output = model(**tokens)
  flags = [sigmoid(s) > 0.5 for s in output[0][0].detach().tolist()]
  topic = [class_mapping[n] for n, i in enumerate(flags) if i]
print(topic)

Reference


@inproceedings{dimosthenis-etal-2022-twitter,
    title = "{T}witter {T}opic {C}lassification",
    author = "Antypas, Dimosthenis  and
    Ushio, Asahi  and
    Camacho-Collados, Jose  and
    Neves, Leonardo  and
    Silva, Vitor  and
    Barbieri, Francesco",
    booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
    month = oct,
    year = "2022",
    address = "Gyeongju, Republic of Korea",
    publisher = "International Committee on Computational Linguistics"
}