|
--- |
|
datasets: |
|
- cardiffnlp/tweet_sentiment_multilingual |
|
metrics: |
|
- f1 |
|
- accuracy |
|
pipeline_tag: text-classification |
|
widget: |
|
- text: Get the all-analog Classic Vinyl Edition of "Takin Off" Album from {@herbiehancock@} |
|
via {@bluenoterecords@} link below {{URL}} |
|
example_title: topic_classification 1 |
|
- text: Yes, including Medicare and social security saving👍 |
|
example_title: sentiment 1 |
|
- text: All two of them taste like ass. |
|
example_title: offensive 1 |
|
- text: If you wanna look like a badass, have drama on social media |
|
example_title: irony 1 |
|
- text: Whoever just unfollowed me you a bitch |
|
example_title: hate 1 |
|
- text: I love swimming for the same reason I love meditating...the feeling of weightlessness. |
|
example_title: emotion 1 |
|
- text: Beautiful sunset last night from the pontoon @TupperLakeNY |
|
example_title: emoji 1 |
|
base_model: bert-base-multilingual-cased |
|
model-index: |
|
- name: cardiffnlp/bert-base-multilingual-cased-sentiment-multilingual |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: cardiffnlp/tweet_sentiment_multilingual |
|
type: all |
|
split: test |
|
metrics: |
|
- type: micro_f1_cardiffnlp/tweet_sentiment_multilingual/all |
|
value: 0.6169540229885058 |
|
name: Micro F1 (cardiffnlp/tweet_sentiment_multilingual/all) |
|
- type: micro_f1_cardiffnlp/tweet_sentiment_multilingual/all |
|
value: 0.6168385894019698 |
|
name: Macro F1 (cardiffnlp/tweet_sentiment_multilingual/all) |
|
- type: accuracy_cardiffnlp/tweet_sentiment_multilingual/all |
|
value: 0.6169540229885058 |
|
name: Accuracy (cardiffnlp/tweet_sentiment_multilingual/all) |
|
--- |
|
# cardiffnlp/bert-base-multilingual-cased-sentiment-multilingual |
|
|
|
This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the |
|
[`cardiffnlp/tweet_sentiment_multilingual (all)`](https://huggingface.co/datasets/cardiffnlp/tweet_sentiment_multilingual) |
|
via [`tweetnlp`](https://github.com/cardiffnlp/tweetnlp). |
|
Training split is `train` and parameters have been tuned on the validation split `validation`. |
|
|
|
Following metrics are achieved on the test split `test` ([link](https://huggingface.co/cardiffnlp/bert-base-multilingual-cased-sentiment-multilingual/raw/main/metric.json)). |
|
|
|
- F1 (micro): 0.6169540229885058 |
|
- F1 (macro): 0.6168385894019698 |
|
- Accuracy: 0.6169540229885058 |
|
|
|
### Usage |
|
Install tweetnlp via pip. |
|
```shell |
|
pip install tweetnlp |
|
``` |
|
Load the model in python. |
|
```python |
|
import tweetnlp |
|
model = tweetnlp.Classifier("cardiffnlp/bert-base-multilingual-cased-sentiment-multilingual", max_length=128) |
|
model.predict('Get the all-analog Classic Vinyl Edition of "Takin Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below {{URL}}') |
|
``` |
|
|
|
### Reference |
|
|
|
``` |
|
@inproceedings{dimosthenis-etal-2022-twitter, |
|
title = "{T}witter {T}opic {C}lassification", |
|
author = "Antypas, Dimosthenis and |
|
Ushio, Asahi and |
|
Camacho-Collados, Jose and |
|
Neves, Leonardo and |
|
Silva, Vitor and |
|
Barbieri, Francesco", |
|
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics", |
|
month = oct, |
|
year = "2022", |
|
address = "Gyeongju, Republic of Korea", |
|
publisher = "International Committee on Computational Linguistics" |
|
} |
|
``` |
|
|
|
|
|
|