// Ceres Solver - A fast non-linear least squares minimizer | |
// Copyright 2019 Google Inc. All rights reserved. | |
// http://ceres-solver.org/ | |
// | |
// Redistribution and use in source and binary forms, with or without | |
// modification, are permitted provided that the following conditions are met: | |
// | |
// * Redistributions of source code must retain the above copyright notice, | |
// this list of conditions and the following disclaimer. | |
// * Redistributions in binary form must reproduce the above copyright notice, | |
// this list of conditions and the following disclaimer in the documentation | |
// and/or other materials provided with the distribution. | |
// * Neither the name of Google Inc. nor the names of its contributors may be | |
// used to endorse or promote products derived from this software without | |
// specific prior written permission. | |
// | |
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | |
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | |
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |
// POSSIBILITY OF SUCH DAMAGE. | |
// | |
// Author: sameeragarwal@google.com (Sameer Agarwal) | |
namespace ceres { | |
class FirstOrderFunction; | |
// Instances of GradientProblem represent general non-linear | |
// optimization problems that must be solved using just the value of | |
// the objective function and its gradient. | |
// Unlike the Problem class, which can only be used to model non-linear least | |
// squares problems, instances of GradientProblem are not restricted in the form | |
// of the objective function. | |
// | |
// Structurally GradientProblem is a composition of a FirstOrderFunction and | |
// optionally a Manifold. | |
// | |
// The FirstOrderFunction is responsible for evaluating the cost and gradient of | |
// the objective function. | |
// | |
// The Manifold is responsible for going back and forth between the ambient | |
// space and the local tangent space. (See manifold.h for more details). When a | |
// Manifold is not provided, then the tangent space is assumed to coincide with | |
// the ambient Euclidean space that the gradient vector lives in. | |
// | |
// Example usage: | |
// | |
// The following demonstrate the problem construction for Rosenbrock's function | |
// | |
// f(x,y) = (1-x)^2 + 100(y - x^2)^2; | |
// | |
// class Rosenbrock : public ceres::FirstOrderFunction { | |
// public: | |
// virtual ~Rosenbrock() {} | |
// | |
// virtual bool Evaluate(const double* parameters, | |
// double* cost, | |
// double* gradient) const { | |
// const double x = parameters[0]; | |
// const double y = parameters[1]; | |
// | |
// cost[0] = (1.0 - x) * (1.0 - x) + 100.0 * (y - x * x) * (y - x * x); | |
// if (gradient != nullptr) { | |
// gradient[0] = -2.0 * (1.0 - x) - 200.0 * (y - x * x) * 2.0 * x; | |
// gradient[1] = 200.0 * (y - x * x); | |
// } | |
// return true; | |
// }; | |
// | |
// virtual int NumParameters() const { return 2; }; | |
// }; | |
// | |
// ceres::GradientProblem problem(new Rosenbrock()); | |
// | |
// NOTE: We are currently in the process of transitioning from | |
// LocalParameterization to Manifolds in the Ceres API. During this period, | |
// GradientProblem will support using both Manifold and LocalParameterization | |
// objects interchangably. For methods in the API affected by this change, see | |
// their documentation below. | |
class CERES_EXPORT GradientProblem { | |
public: | |
// Takes ownership of the function. | |
explicit GradientProblem(FirstOrderFunction* function); | |
// Takes ownership of the function and the parameterization. | |
// | |
// NOTE: This constructor is deprecated and will be removed in the next public | |
// release of Ceres Solver. Please move to using the Manifold based | |
// constructor. | |
CERES_DEPRECATED_WITH_MSG( | |
"LocalParameterizations are deprecated. Please use the constructor that " | |
"uses Manifold instead.") | |
GradientProblem(FirstOrderFunction* function, | |
LocalParameterization* parameterization); | |
// Takes ownership of the function and the manifold. | |
GradientProblem(FirstOrderFunction* function, Manifold* manifold); | |
int NumParameters() const; | |
// Dimension of the manifold (and its tangent space). | |
// | |
// During the transition from LocalParameterization to Manifold, this method | |
// reports the LocalSize of the LocalParameterization or the TangentSize of | |
// the Manifold object associated with this problem. | |
int NumTangentParameters() const; | |
// Dimension of the manifold (and its tangent space). | |
// | |
// NOTE: This method is deprecated and will be removed in the next public | |
// release of Ceres Solver. Please move to using NumTangentParameters() | |
// instead. | |
int NumLocalParameters() const { return NumTangentParameters(); } | |
// This call is not thread safe. | |
bool Evaluate(const double* parameters, double* cost, double* gradient) const; | |
bool Plus(const double* x, const double* delta, double* x_plus_delta) const; | |
const FirstOrderFunction* function() const { return function_.get(); } | |
FirstOrderFunction* mutable_function() { return function_.get(); } | |
// NOTE: During the transition from LocalParameterization to Manifold we need | |
// to support both The LocalParameterization and Manifold based constructors. | |
// | |
// When the user uses the LocalParameterization, internally the solver will | |
// wrap it in a ManifoldAdapter object and return it when manifold or | |
// mutable_manifold are called. | |
// | |
// As a result this method will return a non-nullptr result if a Manifold or a | |
// LocalParameterization was used when constructing the GradientProblem. | |
const Manifold* manifold() const { return manifold_.get(); } | |
Manifold* mutable_manifold() { return manifold_.get(); } | |
// If the problem is constructed without a LocalParameterization or with a | |
// Manifold this method will return a nullptr. | |
// | |
// NOTE: This method is deprecated and will be removed in the next public | |
// release of Ceres Solver. | |
CERES_DEPRECATED_WITH_MSG("Use Manifolds instead.") | |
const LocalParameterization* parameterization() const { | |
return parameterization_.get(); | |
} | |
// If the problem is constructed without a LocalParameterization or with a | |
// Manifold this method will return a nullptr. | |
// | |
// NOTE: This method is deprecated and will be removed in the next public | |
// release of Ceres Solver. | |
CERES_DEPRECATED_WITH_MSG("Use Manifolds instead.") | |
LocalParameterization* mutable_parameterization() { | |
return parameterization_.get(); | |
} | |
private: | |
std::unique_ptr<FirstOrderFunction> function_; | |
CERES_DEPRECATED_WITH_MSG("") | |
std::unique_ptr<LocalParameterization> parameterization_; | |
std::unique_ptr<Manifold> manifold_; | |
std::unique_ptr<double[]> scratch_; | |
}; | |
} // namespace ceres | |