NeMo / nemo /core /optim /novograd.py
camenduru's picture
thanks to NVIDIA ❤
7934b29
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from torch.optim.optimizer import Optimizer
__all__ = ['Novograd']
def _check_valid_opt_params(lr, eps, betas):
if lr < 0:
raise ValueError(f"Invalid learning rate: {lr}")
if eps < 0:
raise ValueError(f"Invalid epsilon value: {eps}")
if not (0.0 <= betas[0] < 1.0 and 0.0 <= betas[1] < 1.0):
raise ValueError(f"Betas have to be between 0 and 1: {betas}")
class Novograd(Optimizer):
"""Implements Novograd algorithm.
It has been proposed in "Stochastic Gradient Methods with Layer-wise
Adaptive Moments for Training of Deep Networks"
(https://arxiv.org/abs/1905.11286)
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): learning rate (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-8)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
amsgrad (boolean, optional): whether to use the AMSGrad variant of this
algorithm from the paper "On the Convergence of Adam and Beyond"
"""
def __init__(
self,
params,
lr=1e-3,
betas=(0.95, 0.98),
eps=1e-8,
weight_decay=0,
grad_averaging=False,
amsgrad=False,
luc=False,
luc_trust=1e-3,
luc_eps=1e-8,
):
_check_valid_opt_params(lr, eps, betas)
defaults = dict(
lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, grad_averaging=grad_averaging, amsgrad=amsgrad,
)
self.luc = luc
self.luc_trust = luc_trust
self.luc_eps = luc_eps
super(Novograd, self).__init__(params, defaults)
def __setstate__(self, state):
super(Novograd, self).__setstate__(state)
for group in self.param_groups:
group.setdefault("amsgrad", False)
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group["params"]:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError("Sparse gradients are not supported.")
amsgrad = group["amsgrad"]
state = self.state[p]
# State initialization
if not state:
state["step"] = 0
# Exponential moving average of gradient values
state["exp_avg"] = torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state["exp_avg_sq"] = torch.zeros([]).to(state["exp_avg"].device)
if amsgrad:
# Maintains max of all exp moving avg of squared grad
state["max_exp_avg_sq"] = torch.zeros([]).to(state["exp_avg"].device)
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"]
if amsgrad:
max_exp_avg_sq = state["max_exp_avg_sq"]
beta1, beta2 = group["betas"]
state["step"] += 1
norm = grad.norm().pow(2)
if exp_avg_sq == 0:
exp_avg_sq.copy_(norm)
else:
exp_avg_sq.mul_(beta2).add_(norm, alpha=1.0 - beta2)
if amsgrad:
# Maintains max of all 2nd moment running avg till now
torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq)
# Use the max for normalizing running avg. of gradient
denom = max_exp_avg_sq.sqrt().add_(group["eps"])
else:
denom = exp_avg_sq.sqrt().add_(group["eps"])
grad.div_(denom)
if group["weight_decay"] != 0:
grad.add_(p.data, alpha=group["weight_decay"])
if group["grad_averaging"]:
grad.mul_(1 - beta1)
exp_avg.mul_(beta1).add_(grad)
if self.luc:
# Clip update so that updates are less than eta*weights
data_norm = torch.norm(p.data)
grad_norm = torch.norm(exp_avg.data)
luc_factor = self.luc_trust * data_norm / (grad_norm + self.luc_eps)
luc_factor = min(luc_factor, group["lr"])
p.data.add_(exp_avg, alpha=-luc_factor)
else:
p.data.add_(exp_avg, alpha=-group["lr"])
return loss