NeMo / examples /nlp /token_classification /punctuate_capitalize_infer.py
camenduru's picture
thanks to NVIDIA ❤
7934b29
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
from pathlib import Path
from typing import Dict, List, Union
import torch.cuda
from nemo.collections.nlp.models import PunctuationCapitalizationLexicalAudioModel, PunctuationCapitalizationModel
"""
This script is for restoring punctuation and capitalization.
Usage example:
python punctuate_capitalize.py \
--input_manifest <PATH/TO/INPUT/MANIFEST> \
--output_manifest <PATH/TO/OUTPUT/MANIFEST>
Usage example for lexical audio model:
python punctuate_capitalize.py \
--input_manifest <PATH/TO/INPUT/MANIFEST> \
--output_manifest <PATH/TO/OUTPUT/MANIFEST> \
--use_audio
<PATH/TO/INPUT/MANIFEST> is a path to NeMo ASR manifest. Usually it is an output of
NeMo/examples/asr/transcribe_speech.py but can be a manifest with 'text' key. Alternatively you can use
--input_text parameter for passing text for inference.
<PATH/TO/OUTPUT/MANIFEST> is a path to NeMo ASR manifest into which script output will be written. Alternatively
you can use parameter --output_text.
For more details on this script usage look in argparse help.
"""
def get_args() -> argparse.Namespace:
default_model_parameter = "pretrained_name"
default_model = "punctuation_en_bert"
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
description="The script is for restoring punctuation and capitalization in text or text and audio. To use text and audio use '--use_audio'. Long strings are split into "
"segments of length `--max_seq_length`. `--max_seq_length` is the length which includes [CLS] and [SEP] "
"tokens. If `--use_audio` is set, samples with texts longer than `--max_seq_length` will be ignored. Parameter `--step` controls segments overlapping. `--step` is a distance between beginnings of "
"consequent segments. Model outputs for tokens near the borders of tensors are less accurate and can be "
"discarded before final predictions computation. Parameter `--margin` is number of discarded outputs near "
"segments borders. Probabilities of tokens in overlapping parts of segments multiplied before selecting the "
"best prediction. Default values of parameters `--max_seq_length`, `--step`, and `--margin` are optimal for "
"IWSLT 2019 test dataset.",
)
parser.add_argument(
'--use_audio',
required=False,
action="store_true",
help="If set `PunctuationCapitalizationLexicalAudioModel` will be used for inference",
)
input_ = parser.add_mutually_exclusive_group(required=True)
input_.add_argument(
"--input_manifest",
"-m",
type=Path,
help="Path to the file with NeMo manifest which needs punctuation and capitalization. If the first element "
"of manifest contains key 'pred_text', 'pred_text' values are passed for tokenization. Otherwise 'text' "
"values are passed for punctuation and capitalization. Exactly one parameter of `--input_manifest` and "
"`--input_text` should be provided.",
)
input_.add_argument(
"--input_text",
"-t",
type=Path,
help="Path to file with text which needs punctuation and capitalization. Exactly one parameter of "
"`--input_manifest` and `--input_text` should be provided.",
)
parser.add_argument(
'--audio_file',
required=False,
type=Path,
help="Path to file with paths to audio. One path per row. Required if '--input_text' provided. Else 'audio_filepath' from manifest will be used.",
)
output = parser.add_mutually_exclusive_group(required=True)
output.add_argument(
"--output_manifest",
"-M",
type=Path,
help="Path to output NeMo manifest. Text with restored punctuation and capitalization will be saved in "
"'pred_text' elements if 'pred_text' key is present in the input manifest. Otherwise text with restored "
"punctuation and capitalization will be saved in 'text' elements. Exactly one parameter of `--output_manifest` "
"and `--output_text` should be provided.",
)
output.add_argument(
"--output_text",
"-T",
type=Path,
help="Path to file with text with restored punctuation and capitalization. Exactly one parameter of "
"`--output_manifest` and `--output_text` should be provided.",
)
model = parser.add_mutually_exclusive_group(required=False)
model.add_argument(
"--pretrained_name",
"-p",
help=f"The name of NGC pretrained model. No more than one of parameters `--pretrained_name`, `--model_path`"
f"should be provided. If neither of parameters `--pretrained_name` and `--model_path` are provided, then the "
f"script is run with `--{default_model_parameter}={default_model}`.",
choices=[m.pretrained_model_name for m in PunctuationCapitalizationModel.list_available_models()]
+ [m.pretrained_model_name for m in PunctuationCapitalizationLexicalAudioModel.list_available_models()],
)
model.add_argument(
"--model_path",
"-P",
type=Path,
help=f"Path to .nemo checkpoint of punctuation and capitalization model. No more than one of parameters "
f"`--pretrained_name` and `--model_path` should be provided. If neither of parameters `--pretrained_name` and "
f"`--model_path` are provided, then the script is run with `--{default_model_parameter}={default_model}`.",
)
parser.add_argument(
"--max_seq_length",
"-L",
type=int,
default=64,
help="Length of segments into which queries are split. `--max_seq_length` includes [CLS] and [SEP] tokens.",
)
parser.add_argument(
"--step",
"-s",
type=int,
default=8,
help="Relative shift of consequent segments into which long queries are split. Long queries are split into "
"segments which can overlap. Parameter `step` controls such overlapping. Imagine that queries are "
"tokenized into characters, `max_seq_length=5`, and `step=2`. In such a case query 'hello' is tokenized "
"into segments `[['[CLS]', 'h', 'e', 'l', '[SEP]'], ['[CLS]', 'l', 'l', 'o', '[SEP]']]`.",
)
parser.add_argument(
"--margin",
"-g",
type=int,
default=16,
help="A number of subtokens in the beginning and the end of segments which output probabilities are not used "
"for prediction computation. The first segment does not have left margin and the last segment does not have "
"right margin. For example, if input sequence is tokenized into characters, `max_seq_length=5`, `step=1`, "
"and `margin=1`, then query 'hello' will be tokenized into segments `[['[CLS]', 'h', 'e', 'l', '[SEP]'], "
"['[CLS]', 'e', 'l', 'l', '[SEP]'], ['[CLS]', 'l', 'l', 'o', '[SEP]']]`. These segments are passed to the "
"model. Before final predictions computation, margins are removed. In the next list, subtokens which logits "
"are not used for final predictions computation are marked with asterisk: `[['[CLS]'*, 'h', 'e', 'l'*, "
"'[SEP]'*], ['[CLS]'*, 'e'*, 'l', 'l'*, '[SEP]'*], ['[CLS]'*, 'l'*, 'l', 'o', '[SEP]'*]]`.",
)
parser.add_argument(
"--batch_size", "-b", type=int, default=128, help="Number of segments which are processed simultaneously.",
)
parser.add_argument(
"--save_labels_instead_of_text",
"-B",
action="store_true",
help="If this option is set, then punctuation and capitalization labels are saved instead text with restored "
"punctuation and capitalization. Labels are saved in format described here "
"https://docs.nvidia.com/deeplearning/nemo/"
"user-guide/docs/en/main/nlp/punctuation_and_capitalization.html#nemo-data-format",
)
parser.add_argument(
"--device",
"-d",
choices=['cpu', 'cuda'],
help="Which device to use. If device is not set and CUDA is available, then GPU will be used. If device is "
"not set and CUDA is not available, then CPU is used.",
)
parser.add_argument(
"--sample_rate",
type=int,
default=16000,
help="Target sample rate for audios if `--use_audio` was passed",
required=False,
)
args = parser.parse_args()
if args.input_manifest is None and args.output_manifest is not None:
parser.error("--output_manifest requires --input_manifest")
if args.use_audio and (args.input_manifest is None and args.audio_file is None):
parser.error("--use_audio and --input_text require --audio_file")
if args.pretrained_name is None and args.model_path is None:
setattr(args, default_model_parameter, default_model)
for name in ["input_manifest", "input_text", "output_manifest", "output_text", "model_path", "audio_file"]:
if getattr(args, name) is not None:
setattr(args, name, getattr(args, name).expanduser())
return args
def load_manifest(manifest: Path) -> List[Dict[str, Union[str, float]]]:
result = []
with manifest.open() as f:
for i, line in enumerate(f):
data = json.loads(line)
result.append(data)
return result
def main() -> None:
args = get_args()
if args.pretrained_name is None:
model = (
PunctuationCapitalizationModel.restore_from(args.model_path)
if not args.use_audio
else PunctuationCapitalizationLexicalAudioModel.restore_from(args.model_path)
)
else:
model = (
PunctuationCapitalizationModel.from_pretrained(args.pretrained_name)
if not args.use_audio
else PunctuationCapitalizationLexicalAudioModel.restore_from(args.model_path)
)
if args.device is None:
if torch.cuda.is_available():
model = model.cuda()
else:
model = model.cpu()
else:
model = model.to(args.device)
if args.input_manifest is None:
texts = []
audios = []
with args.input_text.open() as f:
for line in f:
texts.append(line.strip())
if args.use_audio:
with args.audio_file.open() as f:
for line in f:
audios.append(line.strip())
else:
manifest = load_manifest(args.input_manifest)
text_key = "pred_text" if "pred_text" in manifest[0] else "text"
texts = []
audios = []
for item in manifest:
texts.append(item[text_key])
if args.use_audio:
audios.append(item["audio_filepath"])
if args.use_audio:
processed_texts = model.add_punctuation_capitalization(
texts,
batch_size=args.batch_size,
max_seq_length=args.max_seq_length,
step=args.step,
margin=args.margin,
return_labels=args.save_labels_instead_of_text,
audio_queries=audios,
target_sr=args.sample_rate,
)
else:
processed_texts = model.add_punctuation_capitalization(
texts,
batch_size=args.batch_size,
max_seq_length=args.max_seq_length,
step=args.step,
margin=args.margin,
return_labels=args.save_labels_instead_of_text,
)
if args.output_manifest is None:
args.output_text.parent.mkdir(exist_ok=True, parents=True)
with args.output_text.open('w') as f:
for t in processed_texts:
f.write(t + '\n')
else:
args.output_manifest.parent.mkdir(exist_ok=True, parents=True)
with args.output_manifest.open('w') as f:
for item, t in zip(manifest, processed_texts):
item[text_key] = t
f.write(json.dumps(item) + '\n')
if __name__ == "__main__":
main()