|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
# Task 1: Speech Command Recognition |
|
|
|
## Preparing the dataset |
|
Use the `process_speech_commands_data.py` script under <NEMO_ROOT>/scripts/dataset_processing in order to prepare the dataset. |
|
|
|
```sh |
|
python <NEMO_ROOT>/scripts/dataset_processing/process_speech_commands_data.py \ |
|
--data_root=<absolute path to where the data should be stored> \ |
|
--data_version=<either 1 or 2, indicating version of the dataset> \ |
|
--class_split=<either "all" or "sub", indicates whether all 30/35 classes should be used, or the 10+2 split should be used> \ |
|
--rebalance \ |
|
--log |
|
``` |
|
|
|
## Train to convergence |
|
```sh |
|
python speech_to_label.py \ |
|
# (Optional: --config-path=<path to dir of configs> --config-name=<name of config without .yaml>) \ |
|
model.train_ds.manifest_filepath="<path to train manifest>" \ |
|
model.validation_ds.manifest_filepath=["<path to val manifest>","<path to test manifest>"] \ |
|
trainer.devices=2 \ |
|
trainer.accelerator="gpu" \ |
|
strategy="ddp" \ |
|
trainer.max_epochs=200 \ |
|
exp_manager.create_wandb_logger=True \ |
|
exp_manager.wandb_logger_kwargs.name="MatchboxNet-3x1x64-v1" \ |
|
exp_manager.wandb_logger_kwargs.project="MatchboxNet-v1" \ |
|
+trainer.precision=16 \ |
|
+trainer.amp_level=O1 # needed if using PyTorch < 1.6 |
|
``` |
|
|
|
|
|
# Task 2: Voice Activity Detection |
|
|
|
## Preparing the dataset |
|
Use the `process_vad_data.py` script under <NEMO_ROOT>/scripts/dataset_processing in order to prepare the dataset. |
|
|
|
```sh |
|
python process_vad_data.py \ |
|
--out_dir=<output path to where the generated manifest should be stored> \ |
|
--speech_data_root=<path where the speech data are stored> \ |
|
--background_data_root=<path where the background data are stored> \ |
|
--rebalance_method=<'under' or 'over' of 'fixed'> \ |
|
--log |
|
(Optional --demo (for demonstration in tutorial). If you want to use your own background noise data, make sure to delete --demo) |
|
``` |
|
|
|
## Train to convergence |
|
```sh |
|
python speech_to_label.py \ |
|
--config-path=<path to dir of configs e.g. "conf"> |
|
--config-name=<name of config without .yaml e.g. "matchboxnet_3x1x64_vad"> \ |
|
model.train_ds.manifest_filepath="<path to train manifest>" \ |
|
model.validation_ds.manifest_filepath=["<path to val manifest>","<path to test manifest>"] \ |
|
trainer.devices=2 \ |
|
trainer.accelerator="gpu" \ |
|
strategy="ddp" \ |
|
trainer.max_epochs=200 \ |
|
exp_manager.create_wandb_logger=True \ |
|
exp_manager.wandb_logger_kwargs.name="MatchboxNet-3x1x64-vad" \ |
|
exp_manager.wandb_logger_kwargs.project="MatchboxNet-vad" \ |
|
+trainer.precision=16 \ |
|
+trainer.amp_level=O1 # needed if using PyTorch < 1.6 |
|
``` |
|
|
|
# Task 3: Language Identification |
|
|
|
## Preparing the dataset |
|
Use the `filelist_to_manifest.py` script under <NEMO_ROOT>/scripts/speaker_tasks in order to prepare the dataset. |
|
``` |
|
|
|
## Train to convergence |
|
```sh |
|
python speech_to_label.py \ |
|
--config-path=<path to dir of configs e.g. "../conf/lang_id"> |
|
--config-name=<name of config without .yaml e.g. "titanet_large"> \ |
|
model.train_ds.manifest_filepath="<path to train manifest>" \ |
|
model.validation_ds.manifest_filepath="<path to val manifest>" \ |
|
model.train_ds.augmentor.noise.manifest_path="<path to noise manifest>" \ |
|
model.train_ds.augmentor.impulse.manifest_path="<path to impulse manifest>" \ |
|
model.decoder.num_classes=<num of languages> \ |
|
trainer.devices=2 \ |
|
trainer.max_epochs=40 \ |
|
exp_manager.create_wandb_logger=True \ |
|
exp_manager.wandb_logger_kwargs.name="titanet" \ |
|
exp_manager.wandb_logger_kwargs.project="langid" \ |
|
+exp_manager.checkpoint_callback_params.monitor="val_acc_macro" \ |
|
+exp_manager.checkpoint_callback_params.mode="max" \ |
|
+trainer.precision=16 \ |
|
``` |
|
|
|
|
|
# Optional: Use tarred dataset to speed up data loading. Apply to both tasks. |
|
## Prepare tarred dataset. |
|
Prepare ONE manifest that contains all training data you would like to include. Validation should use non-tarred dataset. |
|
Note that it's possible that tarred datasets impacts validation scores because it drop values in order to have same amount of files per tarfile; |
|
Scores might be off since some data is missing. |
|
|
|
Use the `convert_to_tarred_audio_dataset.py` script under <NEMO_ROOT>/scripts/speech_recognition in order to prepare tarred audio dataset. |
|
For details, please see TarredAudioToClassificationLabelDataset in <NEMO_ROOT>/nemo/collections/asr/data/audio_to_label.py |
|
|
|
python speech_to_label.py \ |
|
--config-path=<path to dir of configs e.g. "conf"> |
|
--config-name=<name of config without .yaml e.g. "matchboxnet_3x1x64_vad"> \ |
|
model.train_ds.manifest_filepath=<path to train tarred_audio_manifest.json> \ |
|
model.train_ds.is_tarred=True \ |
|
model.train_ds.tarred_audio_filepaths=<path to train tarred audio dataset e.g. audio_{0..2}.tar> \ |
|
+model.train_ds.num_worker=<num_shards used generating tarred dataset> \ |
|
model.validation_ds.manifest_filepath=<path to validation audio_manifest.json>\ |
|
trainer.devices=2 \ |
|
trainer.accelerator="gpu" \ |
|
strategy="ddp" \ \ |
|
trainer.max_epochs=200 \ |
|
exp_manager.create_wandb_logger=True \ |
|
exp_manager.wandb_logger_kwargs.name="MatchboxNet-3x1x64-vad" \ |
|
exp_manager.wandb_logger_kwargs.project="MatchboxNet-vad" \ |
|
+trainer.precision=16 \ |
|
+trainer.amp_level=O1 # needed if using PyTorch < 1.6 |
|
|
|
# Fine-tune a model |
|
|
|
For documentation on fine-tuning this model, please visit - |
|
https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/configs.html#fine-tuning-configurations |
|
|
|
# Pretrained Models |
|
|
|
For documentation on existing pretrained models, please visit - |
|
https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/speech_classification/results.html# |
|
|
|
""" |
|
import pytorch_lightning as pl |
|
import torch |
|
from omegaconf import OmegaConf |
|
|
|
from nemo.collections.asr.models import EncDecClassificationModel, EncDecSpeakerLabelModel |
|
from nemo.core.config import hydra_runner |
|
from nemo.utils import logging |
|
from nemo.utils.exp_manager import exp_manager |
|
|
|
|
|
@hydra_runner(config_path="../conf/matchboxnet", config_name="matchboxnet_3x1x64_v1") |
|
def main(cfg): |
|
|
|
logging.info(f'Hydra config: {OmegaConf.to_yaml(cfg)}') |
|
|
|
trainer = pl.Trainer(**cfg.trainer) |
|
exp_manager(trainer, cfg.get("exp_manager", None)) |
|
|
|
if 'titanet' in cfg.name.lower(): |
|
model = EncDecSpeakerLabelModel(cfg=cfg.model, trainer=trainer) |
|
else: |
|
model = EncDecClassificationModel(cfg=cfg.model, trainer=trainer) |
|
|
|
|
|
model.maybe_init_from_pretrained_checkpoint(cfg) |
|
trainer.fit(model) |
|
torch.distributed.destroy_process_group() |
|
|
|
if hasattr(cfg.model, 'test_ds') and cfg.model.test_ds.manifest_filepath is not None: |
|
if trainer.is_global_zero: |
|
trainer = pl.Trainer(devices=1, accelerator=cfg.trainer.accelerator, strategy=cfg.trainer.strategy) |
|
if model.prepare_test(trainer): |
|
trainer.test(model) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|