metadata
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: whisper-og-audio-abuse-feature
results: []
whisper-og-audio-abuse-feature
This model is a fine-tuned version of openai/whisper-medium on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4737
- Accuracy: 0.8922
- Macro Precision: 0.8730
- Macro Recall: 0.8547
- Macro F1-score: 0.8631
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Macro Precision | Macro Recall | Macro F1-score |
---|---|---|---|---|---|---|---|
0.4515 | 0.4367 | 50 | 0.4025 | 0.8069 | 0.8192 | 0.8136 | 0.8066 |
0.3406 | 0.8734 | 100 | 0.3144 | 0.8807 | 0.8875 | 0.8760 | 0.8787 |
0.2698 | 1.3100 | 150 | 0.3496 | 0.8487 | 0.8667 | 0.8408 | 0.8441 |
0.2478 | 1.7467 | 200 | 0.2916 | 0.8942 | 0.8938 | 0.8935 | 0.8937 |
0.1959 | 2.1834 | 250 | 0.3660 | 0.8721 | 0.8795 | 0.8671 | 0.8698 |
0.1286 | 2.6201 | 300 | 0.3699 | 0.8881 | 0.8902 | 0.8853 | 0.8869 |
0.1314 | 3.0568 | 350 | 0.3474 | 0.8905 | 0.8898 | 0.8906 | 0.8901 |
0.0632 | 3.4934 | 400 | 0.4238 | 0.8844 | 0.8843 | 0.8831 | 0.8836 |
0.0761 | 3.9301 | 450 | 0.3957 | 0.8905 | 0.8927 | 0.8878 | 0.8894 |
0.0344 | 4.3668 | 500 | 0.4951 | 0.8918 | 0.8932 | 0.8895 | 0.8908 |
0.0318 | 4.8035 | 550 | 0.5091 | 0.8967 | 0.8969 | 0.8953 | 0.8960 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.1.2
- Datasets 2.19.2
- Tokenizers 0.19.1