|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: cardiffnlp/twitter-roberta-large-hate-latest |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: twitter-roberta-large-hate-latest-profanity-mr |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# twitter-roberta-large-hate-latest-profanity-mr |
|
|
|
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-large-hate-latest](https://huggingface.co/cardiffnlp/twitter-roberta-large-hate-latest) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3265 |
|
- Accuracy: 0.9035 |
|
- Precision: 0.4517 |
|
- Recall: 0.5 |
|
- F1: 0.4746 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 128 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 0.3253 | 0.9836 | 30 | 0.3848 | 0.8819 | 0.4410 | 0.5 | 0.4686 | |
|
| 0.3423 | 2.0 | 61 | 0.3673 | 0.8819 | 0.4410 | 0.5 | 0.4686 | |
|
| 0.3399 | 2.9836 | 91 | 0.3823 | 0.8819 | 0.4410 | 0.5 | 0.4686 | |
|
| 0.3248 | 4.0 | 122 | 0.3630 | 0.8819 | 0.4410 | 0.5 | 0.4686 | |
|
| 0.3 | 4.9836 | 152 | 0.3922 | 0.8819 | 0.4410 | 0.5 | 0.4686 | |
|
| 0.3094 | 6.0 | 183 | 0.3655 | 0.8819 | 0.4410 | 0.5 | 0.4686 | |
|
| 0.3009 | 6.9836 | 213 | 0.3835 | 0.8819 | 0.4410 | 0.5 | 0.4686 | |
|
| 0.2442 | 8.0 | 244 | 0.4946 | 0.7904 | 0.5976 | 0.6514 | 0.6105 | |
|
| 0.1438 | 8.9836 | 274 | 0.3878 | 0.8699 | 0.6590 | 0.5992 | 0.6179 | |
|
| 0.1372 | 9.8361 | 300 | 0.3606 | 0.8723 | 0.6665 | 0.6006 | 0.6207 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.1 |
|
- Pytorch 2.4.0 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.20.0 |
|
|