callmesan's picture
End of training
24a1f79 verified
metadata
library_name: transformers
license: cc-by-4.0
base_model: l3cube-pune/indic-sentence-bert-nli
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: indic-sentence-bert-nli-roman-urdu-binary
    results: []

indic-sentence-bert-nli-roman-urdu-binary

This model is a fine-tuned version of l3cube-pune/indic-sentence-bert-nli on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2789
  • Accuracy: 0.9061
  • Precision: 0.9058
  • Recall: 0.9055
  • F1: 0.9057

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.4984 0.9912 56 0.4611 0.8452 0.8486 0.8489 0.8452
0.3582 2.0 113 0.3373 0.8826 0.8843 0.8802 0.8816
0.2724 2.9912 169 0.2869 0.8901 0.8894 0.8901 0.8897
0.2093 4.0 226 0.2754 0.8926 0.8922 0.8920 0.8921
0.1622 4.9912 282 0.2980 0.8989 0.9016 0.8961 0.8978
0.1235 6.0 339 0.3167 0.8889 0.8883 0.8884 0.8884
0.1125 6.9912 395 0.3369 0.8939 0.8973 0.8907 0.8926
0.0811 8.0 452 0.3535 0.8914 0.8906 0.8918 0.8911
0.0797 8.9912 508 0.3833 0.8914 0.8919 0.8898 0.8906
0.0585 9.9115 560 0.3809 0.8926 0.8924 0.8918 0.8920

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0