|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: ai4bharat/indic-bert |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: indic-bert-hinglish-binary |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# indic-bert-hinglish-binary |
|
|
|
This model is a fine-tuned version of [ai4bharat/indic-bert](https://huggingface.co/ai4bharat/indic-bert) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7521 |
|
- Accuracy: 0.6681 |
|
- Precision: 0.6338 |
|
- Recall: 0.6182 |
|
- F1: 0.6213 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 128 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 0.6539 | 0.9709 | 25 | 0.6510 | 0.6376 | 0.3188 | 0.5 | 0.3894 | |
|
| 0.6235 | 1.9806 | 51 | 0.6296 | 0.6376 | 0.3188 | 0.5 | 0.3894 | |
|
| 0.63 | 2.9903 | 77 | 0.6362 | 0.6376 | 0.3188 | 0.5 | 0.3894 | |
|
| 0.6149 | 4.0 | 103 | 0.6486 | 0.6376 | 0.3188 | 0.5 | 0.3894 | |
|
| 0.6088 | 4.9709 | 128 | 0.6229 | 0.6376 | 0.3188 | 0.5 | 0.3894 | |
|
| 0.5572 | 5.9806 | 154 | 0.6243 | 0.6376 | 0.3188 | 0.5 | 0.3894 | |
|
| 0.4985 | 6.9903 | 180 | 0.6328 | 0.6322 | 0.3178 | 0.4957 | 0.3873 | |
|
| 0.4697 | 8.0 | 206 | 0.6893 | 0.6730 | 0.6504 | 0.5829 | 0.5710 | |
|
| 0.4114 | 8.9709 | 231 | 0.6825 | 0.6839 | 0.6531 | 0.6288 | 0.6327 | |
|
| 0.3981 | 9.7087 | 250 | 0.6905 | 0.6866 | 0.6582 | 0.6228 | 0.6258 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.1 |
|
- Pytorch 2.4.0 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.20.0 |
|
|