|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: ai4bharat/indic-bert |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: indic-bert-hate-mr |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# indic-bert-hate-mr |
|
|
|
This model is a fine-tuned version of [ai4bharat/indic-bert](https://huggingface.co/ai4bharat/indic-bert) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2408 |
|
- Accuracy: 0.9226 |
|
- Precision: 0.9270 |
|
- Recall: 0.9225 |
|
- F1: 0.9224 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 128 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 0.6637 | 1.0 | 61 | 0.6441 | 0.6530 | 0.6780 | 0.6526 | 0.6400 | |
|
| 0.678 | 2.0 | 122 | 0.6538 | 0.6386 | 0.6408 | 0.6387 | 0.6372 | |
|
| 0.6422 | 3.0 | 183 | 0.6597 | 0.6410 | 0.6607 | 0.6405 | 0.6292 | |
|
| 0.6281 | 4.0 | 244 | 0.6202 | 0.6578 | 0.6591 | 0.6579 | 0.6573 | |
|
| 0.5374 | 5.0 | 305 | 0.6306 | 0.6723 | 0.6746 | 0.6721 | 0.6711 | |
|
| 0.4418 | 6.0 | 366 | 0.7122 | 0.6795 | 0.6991 | 0.6799 | 0.6717 | |
|
| 0.3981 | 7.0 | 427 | 0.7183 | 0.6602 | 0.6603 | 0.6602 | 0.6602 | |
|
| 0.3054 | 8.0 | 488 | 0.8008 | 0.6867 | 0.6889 | 0.6869 | 0.6859 | |
|
| 0.2445 | 9.0 | 549 | 0.9741 | 0.6578 | 0.6587 | 0.6577 | 0.6573 | |
|
| 0.1882 | 10.0 | 610 | 0.9924 | 0.6723 | 0.6723 | 0.6723 | 0.6723 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.1 |
|
- Pytorch 2.4.0 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.20.0 |
|
|