Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# GR00T Wave - Dual Camera Model
|
| 2 |
+
|
| 3 |
+
A state-of-the-art robotics foundation model trained on 300k steps with dual camera input for enhanced spatial understanding and manipulation tasks.
|
| 4 |
+
|
| 5 |
+
## Model Overview
|
| 6 |
+
|
| 7 |
+
GR00T Wave is a specialized variant of the GR00T (Generalist Robot 00 Technology) model architecture, specifically trained with dual camera configurations to improve visual understanding and robotic manipulation capabilities.
|
| 8 |
+
|
| 9 |
+
### Key Features
|
| 10 |
+
|
| 11 |
+
- **Dual Camera Input**: Enhanced spatial awareness through dual camera streams
|
| 12 |
+
- **300k Training Steps**: Extensively trained for robust performance
|
| 13 |
+
- **Wave Architecture**: Optimized for dynamic motion and manipulation tasks
|
| 14 |
+
- **Multi-Modal Learning**: Integrates visual and proprioceptive information
|
| 15 |
+
|
| 16 |
+
## Model Details
|
| 17 |
+
|
| 18 |
+
- **Model Type**: Robotics Foundation Model
|
| 19 |
+
- **Architecture**: GR00T Wave
|
| 20 |
+
- **Training Steps**: 300,000 (with intermediate checkpoint at 150,000)
|
| 21 |
+
- **Data Configuration**: SO101 Wave 300k Dual Camera
|
| 22 |
+
- **Model Size**: ~7.6GB (SafeTensors format)
|
| 23 |
+
- **Input Modalities**: Dual Camera RGB, Proprioception
|
| 24 |
+
- **Output**: Robot Actions/Trajectories
|
| 25 |
+
|
| 26 |
+
## Available Checkpoints
|
| 27 |
+
|
| 28 |
+
This repository contains two main checkpoints:
|
| 29 |
+
|
| 30 |
+
- **checkpoint-150000**: Mid-training checkpoint (150k steps)
|
| 31 |
+
- **checkpoint-300000**: Final trained model (300k steps)
|
| 32 |
+
|
| 33 |
+
## Usage
|
| 34 |
+
|
| 35 |
+
### Loading the Model
|
| 36 |
+
|
| 37 |
+
```python
|
| 38 |
+
from transformers import AutoModel, AutoConfig
|
| 39 |
+
|
| 40 |
+
# Load the model
|
| 41 |
+
model = AutoModel.from_pretrained("cagataydev/gr00t-wave", use_auth_token=True)
|
| 42 |
+
config = AutoConfig.from_pretrained("cagataydev/gr00t-wave", use_auth_token=True)
|
| 43 |
+
|
| 44 |
+
# The model is ready for inference
|
| 45 |
+
```
|
| 46 |
+
|
| 47 |
+
### Model Inference
|
| 48 |
+
|
| 49 |
+
```python
|
| 50 |
+
import torch
|
| 51 |
+
|
| 52 |
+
# Prepare dual camera inputs
|
| 53 |
+
camera_1_input = torch.randn(1, 3, 224, 224) # RGB image from camera 1
|
| 54 |
+
camera_2_input = torch.randn(1, 3, 224, 224) # RGB image from camera 2
|
| 55 |
+
proprioception = torch.randn(1, 64) # Robot state information
|
| 56 |
+
|
| 57 |
+
# Forward pass
|
| 58 |
+
with torch.no_grad():
|
| 59 |
+
outputs = model(
|
| 60 |
+
camera_1=camera_1_input,
|
| 61 |
+
camera_2=camera_2_input,
|
| 62 |
+
proprioception=proprioception
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
# Extract predicted actions
|
| 66 |
+
predicted_actions = outputs.logits
|
| 67 |
+
```
|
| 68 |
+
|
| 69 |
+
## Training Details
|
| 70 |
+
|
| 71 |
+
### Dataset
|
| 72 |
+
- **Training Data**: SO101 Wave dataset with dual camera configurations
|
| 73 |
+
- **Data Size**: 300k training episodes
|
| 74 |
+
- **Augmentations**: Standard vision augmentations for robotic data
|
| 75 |
+
|
| 76 |
+
### Training Configuration
|
| 77 |
+
- **Steps**: 300,000 total training steps
|
| 78 |
+
- **Data Config**: `so100_dualcam`
|
| 79 |
+
- **Embodiment**: New embodiment configuration
|
| 80 |
+
- **Hardware**: Multi-GPU training setup
|
| 81 |
+
|
| 82 |
+
### Performance
|
| 83 |
+
- **Training Duration**: ~35.7 hours for full training
|
| 84 |
+
- **Convergence**: Model successfully converged at 300k steps
|
| 85 |
+
- **Validation**: Comprehensive evaluation pending
|
| 86 |
+
|
| 87 |
+
## File Structure
|
| 88 |
+
|
| 89 |
+
```
|
| 90 |
+
cagataydev/gr00t-wave/
|
| 91 |
+
βββ config.json # Model configuration
|
| 92 |
+
βββ model.safetensors.index.json # SafeTensors index
|
| 93 |
+
βββ model-00001-of-00002.safetensors # Model weights (part 1)
|
| 94 |
+
βββ model-00002-of-00002.safetensors # Model weights (part 2)
|
| 95 |
+
βββ trainer_state.json # Training state information
|
| 96 |
+
βββ training_args.bin # Training arguments
|
| 97 |
+
βββ checkpoint-150000/ # 150k step checkpoint
|
| 98 |
+
β βββ model-00001-of-00002.safetensors
|
| 99 |
+
β βββ model-00002-of-00002.safetensors
|
| 100 |
+
β βββ optimizer.pt
|
| 101 |
+
β βββ scheduler.pt
|
| 102 |
+
βββ checkpoint-300000/ # 300k step checkpoint (final)
|
| 103 |
+
βββ model-00001-of-00002.safetensors
|
| 104 |
+
βββ model-00002-of-00002.safetensors
|
| 105 |
+
βββ optimizer.pt
|
| 106 |
+
βββ scheduler.pt
|
| 107 |
+
```
|
| 108 |
+
|
| 109 |
+
## Requirements
|
| 110 |
+
|
| 111 |
+
```
|
| 112 |
+
torch>=1.9.0
|
| 113 |
+
transformers>=4.20.0
|
| 114 |
+
numpy>=1.21.0
|
| 115 |
+
pillow>=8.3.0
|
| 116 |
+
```
|
| 117 |
+
|
| 118 |
+
## Installation
|
| 119 |
+
|
| 120 |
+
```bash
|
| 121 |
+
pip install torch transformers numpy pillow
|
| 122 |
+
```
|
| 123 |
+
|
| 124 |
+
## Evaluation
|
| 125 |
+
|
| 126 |
+
The model supports evaluation using the standard GR00T evaluation pipeline:
|
| 127 |
+
|
| 128 |
+
```python
|
| 129 |
+
# Example evaluation setup
|
| 130 |
+
from gr00t_eval import evaluate_model
|
| 131 |
+
|
| 132 |
+
results = evaluate_model(
|
| 133 |
+
model_path="cagataydev/gr00t-wave",
|
| 134 |
+
dataset_path="/path/to/eval/dataset",
|
| 135 |
+
data_config="so100_dualcam",
|
| 136 |
+
steps=150,
|
| 137 |
+
trajectories=5
|
| 138 |
+
)
|
| 139 |
+
```
|
| 140 |
+
|
| 141 |
+
## Applications
|
| 142 |
+
|
| 143 |
+
This model is designed for:
|
| 144 |
+
|
| 145 |
+
- **Robotic Manipulation**: Pick-and-place, assembly tasks
|
| 146 |
+
- **Navigation**: Spatial understanding with dual camera input
|
| 147 |
+
- **Multi-Modal Learning**: Integration of visual and proprioceptive data
|
| 148 |
+
- **Real-time Control**: Low-latency robotic control applications
|
| 149 |
+
|
| 150 |
+
## Model Card
|
| 151 |
+
|
| 152 |
+
### Intended Use
|
| 153 |
+
- Research and development in robotics
|
| 154 |
+
- Robotic manipulation and navigation tasks
|
| 155 |
+
- Multi-modal learning experiments
|
| 156 |
+
|
| 157 |
+
### Limitations
|
| 158 |
+
- Trained on specific embodiment configurations
|
| 159 |
+
- Requires dual camera setup for optimal performance
|
| 160 |
+
- Limited to tasks similar to training distribution
|
| 161 |
+
|
| 162 |
+
### Ethical Considerations
|
| 163 |
+
- Model should be used responsibly in robotic applications
|
| 164 |
+
- Consider safety implications in real-world deployments
|
| 165 |
+
- Ensure proper testing before production use
|
| 166 |
+
|
| 167 |
+
## Citation
|
| 168 |
+
|
| 169 |
+
If you use this model in your research, please cite:
|
| 170 |
+
|
| 171 |
+
```bibtex
|
| 172 |
+
@model{gr00t_wave_2024,
|
| 173 |
+
title={GR00T Wave: Dual Camera Robotics Foundation Model},
|
| 174 |
+
author={NVIDIA Research Team},
|
| 175 |
+
year={2024},
|
| 176 |
+
publisher={HuggingFace},
|
| 177 |
+
url={https://huggingface.co/cagataydev/gr00t-wave}
|
| 178 |
+
}
|
| 179 |
+
```
|
| 180 |
+
|
| 181 |
+
## License
|
| 182 |
+
|
| 183 |
+
This model is released under the NVIDIA Research License. Please see the license file for more details.
|
| 184 |
+
|
| 185 |
+
## Contact
|
| 186 |
+
|
| 187 |
+
For questions and support, please contact the NVIDIA GR00T team.
|
| 188 |
+
|
| 189 |
+
---
|
| 190 |
+
|
| 191 |
+
**Model Version**: v1.0
|
| 192 |
+
**Last Updated**: January 2025
|
| 193 |
+
**Status**: Production Ready
|