metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- clinc_oos
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-distilled-clinc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: clinc_oos
type: clinc_oos
config: plus
split: validation
args: plus
metrics:
- name: Accuracy
type: accuracy
value: 0.9483870967741935
distilbert-base-uncased-distilled-clinc
This model is a fine-tuned version of distilbert-base-uncased on the clinc_oos dataset. It achieves the following results on the evaluation set:
- Loss: 0.2141
- Accuracy: 0.9484
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.4176 | 1.0 | 1907 | 0.7492 | 0.8610 |
0.336 | 2.0 | 3814 | 0.2997 | 0.9368 |
0.174 | 3.0 | 5721 | 0.2329 | 0.9468 |
0.122 | 4.0 | 7628 | 0.2155 | 0.9484 |
0.1068 | 5.0 | 9535 | 0.2141 | 0.9484 |
Framework versions
- Transformers 4.28.1
- Pytorch 1.11.0+cu113
- Datasets 2.11.0
- Tokenizers 0.13.3