xiezhe24 commited on
Commit
0adfe61
·
verified ·
1 Parent(s): 7e43ebc

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<ts/>": 151670,
9
+ "<ts>": 151669,
10
+ "<|box_end|>": 151649,
11
+ "<|box_start|>": 151648,
12
+ "<|endoftext|>": 151643,
13
+ "<|file_sep|>": 151664,
14
+ "<|fim_middle|>": 151660,
15
+ "<|fim_pad|>": 151662,
16
+ "<|fim_prefix|>": 151659,
17
+ "<|fim_suffix|>": 151661,
18
+ "<|im_end|>": 151645,
19
+ "<|im_start|>": 151644,
20
+ "<|image_pad|>": 151655,
21
+ "<|object_ref_end|>": 151647,
22
+ "<|object_ref_start|>": 151646,
23
+ "<|quad_end|>": 151651,
24
+ "<|quad_start|>": 151650,
25
+ "<|repo_name|>": 151663,
26
+ "<|video_pad|>": 151656,
27
+ "<|vision_end|>": 151653,
28
+ "<|vision_pad|>": 151654,
29
+ "<|vision_start|>": 151652
30
+ }
chat_template.jinja ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if tools %}
2
+ {{- '<|im_start|>system\n' }}
3
+ {%- if messages[0].role == 'system' %}
4
+ {{- messages[0].content + '\n\n' }}
5
+ {%- endif %}
6
+ {{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
7
+ {%- for tool in tools %}
8
+ {{- "\n" }}
9
+ {{- tool | tojson }}
10
+ {%- endfor %}
11
+ {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
12
+ {%- else %}
13
+ {%- if messages[0].role == 'system' %}
14
+ {{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
15
+ {%- endif %}
16
+ {%- endif %}
17
+ {%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
18
+ {%- for message in messages[::-1] %}
19
+ {%- set index = (messages|length - 1) - loop.index0 %}
20
+ {%- if ns.multi_step_tool and message.role == "user" and message.content is string and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}
21
+ {%- set ns.multi_step_tool = false %}
22
+ {%- set ns.last_query_index = index %}
23
+ {%- endif %}
24
+ {%- endfor %}
25
+ {%- for message in messages %}
26
+ {%- if message.content is string %}
27
+ {%- set content = message.content %}
28
+ {%- else %}
29
+ {%- set content = '' %}
30
+ {%- endif %}
31
+ {%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
32
+ {{- '<|im_start|>' + message.role + '\n' + content + '<|im_end|>' + '\n' }}
33
+ {%- elif message.role == "assistant" %}
34
+ {%- set reasoning_content = '' %}
35
+ {%- if message.reasoning_content is string %}
36
+ {%- set reasoning_content = message.reasoning_content %}
37
+ {%- else %}
38
+ {%- if '</think>' in content %}
39
+ {%- set reasoning_content = content.split('</think>')[0].rstrip('\n').split('<think>')[-1].lstrip('\n') %}
40
+ {%- set content = content.split('</think>')[-1].lstrip('\n') %}
41
+ {%- endif %}
42
+ {%- endif %}
43
+ {%- if loop.index0 > ns.last_query_index %}
44
+ {%- if loop.last or (not loop.last and reasoning_content) %}
45
+ {{- '<|im_start|>' + message.role + '\n<think>\n' + reasoning_content.strip('\n') + '\n</think>\n\n' + content.lstrip('\n') }}
46
+ {%- else %}
47
+ {{- '<|im_start|>' + message.role + '\n' + content }}
48
+ {%- endif %}
49
+ {%- else %}
50
+ {{- '<|im_start|>' + message.role + '\n' + content }}
51
+ {%- endif %}
52
+ {%- if message.tool_calls %}
53
+ {%- for tool_call in message.tool_calls %}
54
+ {%- if (loop.first and content) or (not loop.first) %}
55
+ {{- '\n' }}
56
+ {%- endif %}
57
+ {%- if tool_call.function %}
58
+ {%- set tool_call = tool_call.function %}
59
+ {%- endif %}
60
+ {{- '<tool_call>\n{"name": "' }}
61
+ {{- tool_call.name }}
62
+ {{- '", "arguments": ' }}
63
+ {%- if tool_call.arguments is string %}
64
+ {{- tool_call.arguments }}
65
+ {%- else %}
66
+ {{- tool_call.arguments | tojson }}
67
+ {%- endif %}
68
+ {{- '}\n</tool_call>' }}
69
+ {%- endfor %}
70
+ {%- endif %}
71
+ {{- '<|im_end|>\n' }}
72
+ {%- elif message.role == "tool" %}
73
+ {%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
74
+ {{- '<|im_start|>user' }}
75
+ {%- endif %}
76
+ {{- '\n<tool_response>\n' }}
77
+ {{- content }}
78
+ {{- '\n</tool_response>' }}
79
+ {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
80
+ {{- '<|im_end|>\n' }}
81
+ {%- endif %}
82
+ {%- endif %}
83
+ {%- endfor %}
84
+ {%- if add_generation_prompt %}
85
+ {{- '<|im_start|>assistant\n' }}
86
+ {%- if enable_thinking is defined and enable_thinking is false %}
87
+ {{- '<think>\n\n</think>\n\n' }}
88
+ {%- endif %}
89
+ {%- endif %}
config.json ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen3TSForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_qwen3_ts.Qwen3TSConfig",
9
+ "AutoModel": "modeling_qwen3_ts.Qwen3TSForCausalLM",
10
+ "AutoModelForCausalLM": "modeling_qwen3_ts.Qwen3TSForCausalLM",
11
+ "AutoProcessor": "processing_qwen3_ts.Qwen3TSProcessor"
12
+ },
13
+ "bos_token_id": 151643,
14
+ "eos_token_id": 151645,
15
+ "head_dim": 128,
16
+ "hidden_act": "silu",
17
+ "hidden_size": 4096,
18
+ "ignore_index": -100,
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 12288,
21
+ "layer_types": [
22
+ "full_attention",
23
+ "full_attention",
24
+ "full_attention",
25
+ "full_attention",
26
+ "full_attention",
27
+ "full_attention",
28
+ "full_attention",
29
+ "full_attention",
30
+ "full_attention",
31
+ "full_attention",
32
+ "full_attention",
33
+ "full_attention",
34
+ "full_attention",
35
+ "full_attention",
36
+ "full_attention",
37
+ "full_attention",
38
+ "full_attention",
39
+ "full_attention",
40
+ "full_attention",
41
+ "full_attention",
42
+ "full_attention",
43
+ "full_attention",
44
+ "full_attention",
45
+ "full_attention",
46
+ "full_attention",
47
+ "full_attention",
48
+ "full_attention",
49
+ "full_attention",
50
+ "full_attention",
51
+ "full_attention",
52
+ "full_attention",
53
+ "full_attention",
54
+ "full_attention",
55
+ "full_attention",
56
+ "full_attention",
57
+ "full_attention"
58
+ ],
59
+ "max_position_embeddings": 40960,
60
+ "max_window_layers": 36,
61
+ "model_type": "qwen3ts",
62
+ "num_attention_heads": 32,
63
+ "num_hidden_layers": 36,
64
+ "num_key_value_heads": 8,
65
+ "pad_token_id": 151643,
66
+ "rms_norm_eps": 1e-06,
67
+ "rope_scaling": null,
68
+ "rope_theta": 1000000,
69
+ "sliding_window": null,
70
+ "tie_word_embeddings": false,
71
+ "torch_dtype": "float16",
72
+ "transformers_version": "4.52.4",
73
+ "ts": {
74
+ "embedding_dim": 16,
75
+ "hidden_size": 4096,
76
+ "max_length": 32768,
77
+ "max_sequence_length": 8192,
78
+ "num_features": 2,
79
+ "num_layers": 5,
80
+ "patch_size": 8,
81
+ "use_layer_norm": false,
82
+ "use_position_embedding": true,
83
+ "use_position_idx": false
84
+ },
85
+ "ts_token_end_index": 151670,
86
+ "ts_token_start_index": 151669,
87
+ "use_cache": false,
88
+ "use_sliding_window": false,
89
+ "vocab_size": 151936
90
+ }
configuration_qwen3_ts.py ADDED
@@ -0,0 +1,225 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Qwen3 model configuration"""
16
+
17
+ from transformers.configuration_utils import PretrainedConfig
18
+ from transformers.modeling_rope_utils import rope_config_validation
19
+ from transformers.utils import logging
20
+
21
+
22
+ logger = logging.get_logger(__name__)
23
+
24
+
25
+ class Qwen3TSConfig(PretrainedConfig):
26
+ r"""
27
+ This is the configuration class to store the configuration of a [`Qwen3Model`]. It is used to instantiate a
28
+ Qwen3 model according to the specified arguments, defining the model architecture. Instantiating a configuration
29
+ with the defaults will yield a similar configuration to that of
30
+ Qwen3-8B [Qwen/Qwen3-8B](https://huggingface.co/Qwen/Qwen3-8B).
31
+
32
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
33
+ documentation from [`PretrainedConfig`] for more information.
34
+
35
+
36
+ Args:
37
+ vocab_size (`int`, *optional*, defaults to 151936):
38
+ Vocabulary size of the Qwen3 model. Defines the number of different tokens that can be represented by the
39
+ `inputs_ids` passed when calling [`Qwen3Model`]
40
+ hidden_size (`int`, *optional*, defaults to 4096):
41
+ Dimension of the hidden representations.
42
+ intermediate_size (`int`, *optional*, defaults to 22016):
43
+ Dimension of the MLP representations.
44
+ num_hidden_layers (`int`, *optional*, defaults to 32):
45
+ Number of hidden layers in the Transformer encoder.
46
+ num_attention_heads (`int`, *optional*, defaults to 32):
47
+ Number of attention heads for each attention layer in the Transformer encoder.
48
+ num_key_value_heads (`int`, *optional*, defaults to 32):
49
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
50
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
51
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
52
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
53
+ by meanpooling all the original heads within that group. For more details, check out [this
54
+ paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to `32`.
55
+ head_dim (`int`, *optional*, defaults to 128):
56
+ The attention head dimension.
57
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
58
+ The non-linear activation function (function or string) in the decoder.
59
+ max_position_embeddings (`int`, *optional*, defaults to 32768):
60
+ The maximum sequence length that this model might ever be used with.
61
+ initializer_range (`float`, *optional*, defaults to 0.02):
62
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
63
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
64
+ The epsilon used by the rms normalization layers.
65
+ use_cache (`bool`, *optional*, defaults to `True`):
66
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
67
+ relevant if `config.is_decoder=True`.
68
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
69
+ Whether the model's input and output word embeddings should be tied.
70
+ rope_theta (`float`, *optional*, defaults to 10000.0):
71
+ The base period of the RoPE embeddings.
72
+ rope_scaling (`Dict`, *optional*):
73
+ Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
74
+ and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
75
+ accordingly.
76
+ Expected contents:
77
+ `rope_type` (`str`):
78
+ The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
79
+ 'llama3'], with 'default' being the original RoPE implementation.
80
+ `factor` (`float`, *optional*):
81
+ Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
82
+ most scaling types, a `factor` of x will enable the model to handle sequences of length x *
83
+ original maximum pre-trained length.
84
+ `original_max_position_embeddings` (`int`, *optional*):
85
+ Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
86
+ pretraining.
87
+ `attention_factor` (`float`, *optional*):
88
+ Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
89
+ computation. If unspecified, it defaults to value recommended by the implementation, using the
90
+ `factor` field to infer the suggested value.
91
+ `beta_fast` (`float`, *optional*):
92
+ Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
93
+ ramp function. If unspecified, it defaults to 32.
94
+ `beta_slow` (`float`, *optional*):
95
+ Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
96
+ ramp function. If unspecified, it defaults to 1.
97
+ `short_factor` (`list[float]`, *optional*):
98
+ Only used with 'longrope'. The scaling factor to be applied to short contexts (<
99
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
100
+ size divided by the number of attention heads divided by 2
101
+ `long_factor` (`list[float]`, *optional*):
102
+ Only used with 'longrope'. The scaling factor to be applied to long contexts (<
103
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
104
+ size divided by the number of attention heads divided by 2
105
+ `low_freq_factor` (`float`, *optional*):
106
+ Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
107
+ `high_freq_factor` (`float`, *optional*):
108
+ Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
109
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
110
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
111
+ use_sliding_window (`bool`, *optional*, defaults to `False`):
112
+ Whether to use sliding window attention.
113
+ sliding_window (`int`, *optional*, defaults to 4096):
114
+ Sliding window attention (SWA) window size. If not specified, will default to `4096`.
115
+ max_window_layers (`int`, *optional*, defaults to 28):
116
+ The number of layers using full attention. The first `max_window_layers` layers will use full attention, while any
117
+ additional layer afterwards will use SWA (Sliding Window Attention).
118
+ layer_types (`list`, *optional*):
119
+ Attention pattern for each layer.
120
+ attention_dropout (`float`, *optional*, defaults to 0.0):
121
+ The dropout ratio for the attention probabilities.
122
+
123
+ ```python
124
+ >>> from transformers import Qwen3Model, Qwen3Config
125
+
126
+ >>> # Initializing a Qwen3 style configuration
127
+ >>> configuration = Qwen3Config()
128
+
129
+ >>> # Initializing a model from the Qwen3-8B style configuration
130
+ >>> model = Qwen3Model(configuration)
131
+
132
+ >>> # Accessing the model configuration
133
+ >>> configuration = model.config
134
+ ```"""
135
+
136
+ model_type = "qwen3ts"
137
+ keys_to_ignore_at_inference = ["past_key_values"]
138
+
139
+ # Default tensor parallel plan for base model `Qwen3`
140
+ base_model_tp_plan = {
141
+ "layers.*.self_attn.q_proj": "colwise",
142
+ "layers.*.self_attn.k_proj": "colwise",
143
+ "layers.*.self_attn.v_proj": "colwise",
144
+ "layers.*.self_attn.o_proj": "rowwise",
145
+ "layers.*.mlp.gate_proj": "colwise",
146
+ "layers.*.mlp.up_proj": "colwise",
147
+ "layers.*.mlp.down_proj": "rowwise",
148
+ }
149
+ base_model_pp_plan = {
150
+ "embed_tokens": (["input_ids"], ["inputs_embeds"]),
151
+ "layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
152
+ "norm": (["hidden_states"], ["hidden_states"]),
153
+ }
154
+
155
+ def __init__(
156
+ self,
157
+ vocab_size=151936,
158
+ hidden_size=4096,
159
+ intermediate_size=22016,
160
+ num_hidden_layers=32,
161
+ num_attention_heads=32,
162
+ num_key_value_heads=32,
163
+ head_dim=128,
164
+ hidden_act="silu",
165
+ max_position_embeddings=32768,
166
+ initializer_range=0.02,
167
+ rms_norm_eps=1e-6,
168
+ use_cache=True,
169
+ tie_word_embeddings=False,
170
+ rope_theta=10000.0,
171
+ rope_scaling=None,
172
+ attention_bias=False,
173
+ use_sliding_window=False,
174
+ sliding_window=4096,
175
+ max_window_layers=28,
176
+ layer_types=None,
177
+ attention_dropout=0.0,
178
+ **kwargs,
179
+ ):
180
+ self.vocab_size = vocab_size
181
+ self.max_position_embeddings = max_position_embeddings
182
+ self.hidden_size = hidden_size
183
+ self.intermediate_size = intermediate_size
184
+ self.num_hidden_layers = num_hidden_layers
185
+ self.num_attention_heads = num_attention_heads
186
+ self.use_sliding_window = use_sliding_window
187
+ self.sliding_window = sliding_window if self.use_sliding_window else None
188
+ self.max_window_layers = max_window_layers
189
+
190
+ # for backward compatibility
191
+ if num_key_value_heads is None:
192
+ num_key_value_heads = num_attention_heads
193
+
194
+ self.num_key_value_heads = num_key_value_heads
195
+ self.head_dim = head_dim
196
+ self.hidden_act = hidden_act
197
+ self.initializer_range = initializer_range
198
+ self.rms_norm_eps = rms_norm_eps
199
+ self.use_cache = use_cache
200
+ self.rope_theta = rope_theta
201
+ self.rope_scaling = rope_scaling
202
+ self.attention_bias = attention_bias
203
+ self.attention_dropout = attention_dropout
204
+ # Validate the correctness of rotary position embeddings parameters
205
+ # BC: if there is a 'type' field, move it to 'rope_type'.
206
+ if self.rope_scaling is not None and "type" in self.rope_scaling:
207
+ self.rope_scaling["rope_type"] = self.rope_scaling["type"]
208
+ rope_config_validation(self)
209
+
210
+ self.layer_types = layer_types
211
+ if self.layer_types is None:
212
+ self.layer_types = [
213
+ "sliding_attention"
214
+ if self.sliding_window is not None and i >= self.max_window_layers
215
+ else "full_attention"
216
+ for i in range(self.num_hidden_layers)
217
+ ]
218
+
219
+ super().__init__(
220
+ tie_word_embeddings=tie_word_embeddings,
221
+ **kwargs,
222
+ )
223
+
224
+
225
+ __all__ = ["Qwen3TSConfig"]
generation_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "temperature": 0.6,
10
+ "top_k": 20,
11
+ "top_p": 0.95,
12
+ "transformers_version": "4.52.4"
13
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
modeling_qwen3_ts.py ADDED
@@ -0,0 +1,622 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2025 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from typing import Callable, Optional, Union
16
+
17
+ import torch
18
+ from torch import nn
19
+ from dataclasses import dataclass
20
+
21
+ from transformers.cache_utils import Cache
22
+ from transformers.generation import GenerationMixin
23
+ from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
24
+ from transformers.modeling_outputs import (
25
+ BaseModelOutputWithPast,
26
+ CausalLMOutputWithPast
27
+ )
28
+ from transformers.models.qwen3.modeling_qwen3 import Qwen3PreTrainedModel, Qwen3Model
29
+ from transformers.modeling_utils import PreTrainedModel
30
+ from transformers.processing_utils import Unpack
31
+ from transformers.utils import LossKwargs, auto_docstring, can_return_tuple, logging, ModelOutput
32
+ from .configuration_qwen3_ts import Qwen3TSConfig
33
+ from typing import Any, Dict
34
+
35
+
36
+ logger = logging.get_logger(__name__)
37
+
38
+
39
+ ########################MLP TS Embedding#####################
40
+ class TimeSeriesEmbedding(nn.Module):
41
+ def __init__(self, config):
42
+ super(TimeSeriesEmbedding, self).__init__()
43
+ self.patch_size = config['patch_size']
44
+ self.num_layers = config['num_layers']
45
+ self.hidden_size = config['hidden_size']
46
+ self.num_features = config['num_features']
47
+ self.max_sequence_length = config['max_sequence_length'] # Maximum time series length
48
+ self.use_position_embedding = config.get('use_position_embedding', False)
49
+ self.use_position_idx = config.get('use_position_idx', False)
50
+ self.use_layer_norm = config.get('use_layer_norm', False)
51
+ self.embedding_dim = config.get('embedding_dim', 16) # Embedding dimension
52
+
53
+ if self.use_position_embedding:
54
+ # Extended vocabulary: [0, max_sequence_length) for real positions, max_sequence_length for padding
55
+ self.position_embedding = nn.Embedding(self.max_sequence_length + 1, self.embedding_dim)
56
+ self.padding_idx = self.max_sequence_length # Special index for padding
57
+ input_size = 1 * self.patch_size + self.embedding_dim * self.patch_size
58
+ elif self.use_position_idx:
59
+ input_size = 2 * self.patch_size
60
+ else:
61
+ input_size = 1 * self.patch_size
62
+
63
+ # Build MLP layers
64
+ layers = []
65
+ for _ in range(self.num_layers - 1):
66
+ layers.append(nn.Linear(input_size, self.hidden_size))
67
+ layers.append(nn.GELU())
68
+ input_size = self.hidden_size
69
+
70
+ layers.append(nn.Linear(input_size, self.hidden_size))
71
+ if self.use_layer_norm:
72
+ layers.append(nn.LayerNorm(self.hidden_size))
73
+
74
+ self.mlp = nn.Sequential(*layers)
75
+
76
+ def forward(self, x: torch.Tensor):
77
+ batch_size = x.size(0)
78
+ x = x.reshape(batch_size, -1, self.num_features)
79
+
80
+ # Extract mask and calculate valid lengths
81
+ mask = x[:, :, -1].long()
82
+ valid_lengths = mask.sum(dim=1).long()
83
+ patch_cnt = (valid_lengths + self.patch_size - 1) // self.patch_size
84
+
85
+ patches_list = []
86
+ # Collect position indices for batch embedding lookup
87
+ all_position_indices = []
88
+ patch_info_list = [] # Store metadata for each patch group
89
+
90
+ for i in range(batch_size):
91
+ vl = valid_lengths[i].item()
92
+ pc = patch_cnt[i].item()
93
+ if pc == 0:
94
+ continue
95
+
96
+ # Extract time series data (excluding mask)
97
+ xi = x[i, :vl, :1] # Time-series data
98
+ total_padded_length = pc * self.patch_size
99
+ padding_length = total_padded_length - vl
100
+
101
+ # Create position indices: real positions for actual data, special index for padding
102
+ position_indices = torch.arange(vl, device=x.device)
103
+
104
+ if padding_length > 0:
105
+ # Pad with last value
106
+ last_value = xi[-1:, :]
107
+ padding = last_value.repeat(padding_length, 1)
108
+ xi = torch.cat([xi, padding], dim=0)
109
+
110
+ # Use special padding index for padding positions
111
+ padding_positions = torch.full((padding_length,), self.padding_idx, device=x.device)
112
+ position_indices = torch.cat([position_indices, padding_positions], dim=0)
113
+
114
+ # Reshape to patches
115
+ xi = xi.reshape(pc, self.patch_size) # (num_patches, patch_size)
116
+ position_indices = position_indices.reshape(pc, self.patch_size) # (num_patches, patch_size)
117
+
118
+ if self.use_position_embedding:
119
+ # Collect position indices instead of calling embedding immediately
120
+ all_position_indices.append(position_indices)
121
+ patch_info_list.append({
122
+ 'xi': xi,
123
+ 'pc': pc,
124
+ 'sample_idx': i
125
+ })
126
+ elif self.use_position_idx:
127
+ # Normalize position indices
128
+ pos_indices = torch.arange(vl, device=x.device).unsqueeze(1)
129
+ pos_indices = pos_indices / max(1, valid_lengths.max().item() - 1)
130
+ if padding_length > 0:
131
+ # Use -1 for padding positions
132
+ padding_indices = torch.full((padding_length, 1), -1, device=x.device)
133
+ pos_indices = torch.cat([pos_indices, padding_indices], dim=0)
134
+ # Combine time series data with position indices
135
+ xi_combined = torch.cat([xi.reshape(-1, 1), pos_indices], dim=1)
136
+ patch_input = xi_combined.reshape(pc, self.patch_size * 2)
137
+ patches_list.append(patch_input)
138
+ else:
139
+ # No position embedding, use raw patches
140
+ patch_input = xi
141
+ patches_list.append(patch_input)
142
+
143
+ # Batch process position embeddings if needed
144
+ if self.use_position_embedding and all_position_indices:
145
+ # Concatenate all position indices for batch embedding lookup
146
+ batch_position_indices = torch.cat(all_position_indices, dim=0)
147
+ # print(f"{x.shape=}, {x.device=}, {len(all_position_indices)=}, {batch_position_indices=}")
148
+ batch_pos_emb = self.position_embedding(batch_position_indices) # Single embedding call
149
+
150
+ # Split embeddings back and create patch inputs
151
+ emb_start_idx = 0
152
+ for patch_info in patch_info_list:
153
+ xi = patch_info['xi']
154
+ pc = patch_info['pc']
155
+
156
+ # Extract corresponding embeddings
157
+ pos_emb = batch_pos_emb[emb_start_idx:emb_start_idx + pc]
158
+ emb_start_idx += pc
159
+
160
+ # Flatten and concatenate
161
+ xi = xi.unsqueeze(-1) # (num_patches, patch_size, 1)
162
+ patch_input = torch.cat([
163
+ xi.flatten(1), # (num_patches, patch_size)
164
+ pos_emb.flatten(1) # (num_patches, patch_size * embedding_dim)
165
+ ], dim=1)
166
+ patches_list.append(patch_input)
167
+
168
+ # Process all patches through MLP
169
+ if patches_list:
170
+ x_patches = torch.cat(patches_list, dim=0)
171
+ x = self.mlp(x_patches)
172
+ else:
173
+ # Handle empty case
174
+ x = torch.empty(0, self.hidden_size, device=x.device)
175
+
176
+ return x, patch_cnt
177
+
178
+
179
+ @dataclass
180
+ class Qwen3TSCausalLMOutputWithPast(CausalLMOutputWithPast):
181
+ """
182
+ Output type of Qwen3TSForCausalLM that includes additional fields for timeseries processing.
183
+
184
+ Args:
185
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
186
+ Language modeling loss (for next-token prediction).
187
+ logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
188
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
189
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed):
190
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
191
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`.
192
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed):
193
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
194
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
195
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed):
196
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`.
197
+ attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
198
+ The attention mask used in the forward pass, potentially expanded to accommodate timeseries patches.
199
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
200
+ Labels for computing the masked language modeling loss.
201
+ new_token_positions (`torch.LongTensor` of shape `(batch_size, num_new_tokens)`, *optional*):
202
+ Positions where new tokens (not from timeseries) are located in the expanded sequence.
203
+ """
204
+ attention_mask: Optional[torch.FloatTensor] = None
205
+ labels: Optional[torch.LongTensor] = None
206
+ new_token_positions: Optional[torch.LongTensor] = None
207
+
208
+
209
+ class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
210
+
211
+
212
+ class Qwen3TSGenerationMixin(GenerationMixin):
213
+ """
214
+ Generation mixin for Qwen3 models with timeseries support.
215
+
216
+ This mixin handles the special case where timeseries embeddings expand the sequence length
217
+ during the first forward pass, requiring special attention mask management.
218
+ """
219
+
220
+ def prepare_inputs_for_generation(
221
+ self,
222
+ input_ids: torch.LongTensor,
223
+ past_key_values: Optional[Cache] = None,
224
+ attention_mask: Optional[torch.LongTensor] = None,
225
+ inputs_embeds: Optional[torch.FloatTensor] = None,
226
+ cache_position: Optional[torch.LongTensor] = None,
227
+ timeseries: Optional[torch.FloatTensor] = None,
228
+ **kwargs,
229
+ ) -> Dict[str, Any]:
230
+ """
231
+ Prepare inputs for generation with timeseries support.
232
+
233
+ Timeseries are only processed during the first forward pass. In subsequent
234
+ generation steps, they are already embedded in the past_key_values.
235
+ """
236
+ # Check if we have timeseries data
237
+ has_ts = timeseries is not None and len(timeseries) > 0
238
+
239
+ # Handle timeseries for generation with past_key_values
240
+ if has_ts and past_key_values is not None:
241
+ # Get the number of tokens already processed
242
+ if isinstance(past_key_values, Cache):
243
+ past_length = past_key_values.seen_tokens
244
+ else:
245
+ past_length = past_key_values[0][0].shape[2] if past_key_values[0] is not None else 0
246
+
247
+ # If we have processed tokens, timeseries have already been embedded
248
+ if past_length > 0:
249
+ # Only keep the last token for next token prediction
250
+ input_ids = input_ids[:, -1:]
251
+ # Clear timeseries as they've been processed
252
+ timeseries = None
253
+ has_ts = False
254
+
255
+ # Call parent's prepare_inputs_for_generation to handle all standard logic
256
+ model_inputs = super().prepare_inputs_for_generation(
257
+ input_ids=input_ids,
258
+ past_key_values=past_key_values,
259
+ attention_mask=attention_mask,
260
+ inputs_embeds=inputs_embeds,
261
+ cache_position=cache_position,
262
+ **kwargs
263
+ )
264
+
265
+ # Add timeseries to model inputs
266
+ model_inputs["timeseries"] = timeseries
267
+
268
+ return model_inputs
269
+
270
+ def _update_model_kwargs_for_generation(
271
+ self,
272
+ outputs: ModelOutput,
273
+ model_kwargs: Dict[str, Any],
274
+ is_encoder_decoder: bool = False,
275
+ num_new_tokens: int = 1,
276
+ ) -> Dict[str, Any]:
277
+ """
278
+ Update model keyword arguments for generation, handling attention mask from outputs.
279
+
280
+ This is necessary because timeseries processing can expand the sequence length,
281
+ and we need to use the expanded attention_mask from the model outputs.
282
+ """
283
+ # Handle special case: use attention_mask from outputs if available
284
+ # This is crucial for timeseries models where the sequence length is expanded
285
+ if hasattr(outputs, "attention_mask") and outputs.attention_mask is not None:
286
+ model_kwargs["attention_mask"] = outputs.attention_mask
287
+
288
+ # Call parent's implementation for standard updates
289
+ model_kwargs = super()._update_model_kwargs_for_generation(
290
+ outputs=outputs,
291
+ model_kwargs=model_kwargs,
292
+ is_encoder_decoder=is_encoder_decoder,
293
+ num_new_tokens=num_new_tokens,
294
+ )
295
+
296
+ return model_kwargs
297
+
298
+ def generate(
299
+ self,
300
+ inputs: Optional[torch.Tensor] = None,
301
+ timeseries: Optional[torch.FloatTensor] = None,
302
+ generation_config=None,
303
+ **kwargs,
304
+ ):
305
+ """
306
+ Generate sequences with timeseries support.
307
+
308
+ Args:
309
+ inputs: Input token ids
310
+ timeseries: Optional timeseries data to be processed in the first forward pass
311
+ generation_config: Generation configuration
312
+ **kwargs: Additional keyword arguments for generation
313
+ """
314
+ # Add timeseries to kwargs if provided
315
+ if timeseries is not None:
316
+ kwargs["timeseries"] = timeseries
317
+
318
+ # Call parent's generate method
319
+ return super().generate(
320
+ inputs=inputs,
321
+ generation_config=generation_config,
322
+ **kwargs,
323
+ )
324
+
325
+ def _validate_model_kwargs(self, model_kwargs: Dict[str, Any]) -> None:
326
+ """
327
+ Validate model kwargs, allowing timeseries as a valid argument.
328
+ """
329
+ # Remove timeseries from model_kwargs temporarily for validation
330
+ timeseries = model_kwargs.pop("timeseries", None)
331
+
332
+ # Call parent's validation
333
+ super()._validate_model_kwargs(model_kwargs)
334
+
335
+ # Restore timeseries
336
+ if timeseries is not None:
337
+ model_kwargs["timeseries"] = timeseries
338
+
339
+ class Qwen3TSPreTrainedModel(Qwen3PreTrainedModel):
340
+ config_class = Qwen3TSConfig
341
+
342
+ @auto_docstring
343
+ class Qwen3TSForCausalLM(Qwen3TSPreTrainedModel, Qwen3TSGenerationMixin):
344
+ _tied_weights_keys = ["lm_head.weight"]
345
+ _tp_plan = {"lm_head": "colwise_rep"}
346
+ _pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
347
+
348
+ def __init__(self, config):
349
+ super().__init__(config)
350
+ self.model = Qwen3Model(config)
351
+ self.vocab_size = config.vocab_size
352
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
353
+
354
+ # TS embedding
355
+ self.ts_encoder = TimeSeriesEmbedding(config.ts)
356
+
357
+ # Initialize weights and apply final processing
358
+ self.post_init()
359
+
360
+ def get_input_embeddings(self):
361
+ return self.model.embed_tokens
362
+
363
+ def set_input_embeddings(self, value):
364
+ self.model.embed_tokens = value
365
+
366
+ def get_output_embeddings(self):
367
+ return self.lm_head
368
+
369
+ def set_output_embeddings(self, new_embeddings):
370
+ self.lm_head = new_embeddings
371
+
372
+ def set_decoder(self, decoder):
373
+ self.model = decoder
374
+
375
+ def get_decoder(self):
376
+ return self.model
377
+
378
+ def _merge_input_ids_with_time_series_features(self, time_series_features, inputs_embeds, input_ids, attention_mask, labels, patch_cnt):
379
+ batch_size, sequence_length = input_ids.shape
380
+ _left_padding = torch.any(attention_mask[:, 0] == 0)
381
+ _right_padding = torch.any(attention_mask[:, -1] == 0)
382
+ left_padding = False
383
+ if batch_size > 1:
384
+ if _left_padding and not _right_padding:
385
+ left_padding = True
386
+ elif not _left_padding and _right_padding:
387
+ left_padding = False
388
+ elif not _left_padding and not _right_padding:
389
+ left_padding = False
390
+ else:
391
+ raise ValueError(f"both side of attention_mask has zero, invalid. {attention_mask}")
392
+ else:
393
+ if _left_padding and not _right_padding:
394
+ left_padding = True
395
+ else:
396
+ left_padding = False
397
+
398
+ # 1. Create a mask to know where special time series tokens are
399
+ special_ts_token_mask_start = input_ids == self.config.ts_token_start_index
400
+ special_ts_token_mask_end = input_ids == self.config.ts_token_end_index
401
+ special_ts_token_mask = special_ts_token_mask_start | special_ts_token_mask_end
402
+
403
+ # 2. Calculate patch count
404
+ num_special_ts_tokens = torch.sum(special_ts_token_mask_start, dim=-1)
405
+ total_time_steps, embed_dim = time_series_features.shape
406
+
407
+ # Correctly calculate the total number of patches per batch
408
+ patch_index = 0
409
+ num_total_patches = torch.zeros(batch_size, dtype=patch_cnt.dtype, device=patch_cnt.device)
410
+ special_ts_token_mask_start_nonzero = special_ts_token_mask_start.nonzero()
411
+ special_ts_token_mask_start_with_size = special_ts_token_mask_start.clone().long()
412
+
413
+ attn_mask_cnt = attention_mask.sum(dim=-1)
414
+ for i in range(batch_size):
415
+ num_ts_in_batch = num_special_ts_tokens[i]
416
+ num_total_patches[i] = patch_cnt[patch_index : patch_index + num_ts_in_batch].sum() - 2 * num_ts_in_batch
417
+ for idx in range(patch_index, patch_index + num_ts_in_batch):
418
+ b_idx, pos = special_ts_token_mask_start_nonzero[idx]
419
+ special_ts_token_mask_start_with_size[b_idx, pos] *= (patch_cnt[idx].item() - 2)
420
+ patch_index += num_ts_in_batch
421
+ attn_mask_cnt[i] += num_total_patches[i].item()
422
+
423
+ # 3. Embeding length
424
+ max_embed_dim = sequence_length + num_total_patches.max()
425
+
426
+ # 4. Non ts tokens
427
+ batch_indices, non_ts_indices = torch.where(~special_ts_token_mask)
428
+ attn_batch_indices, attn_indices = torch.where(attention_mask == 1)
429
+
430
+ # 5. Text token in final text positions
431
+ new_token_positions = torch.cumsum((special_ts_token_mask_start_with_size + 1), dim=-1) - 1
432
+
433
+ # nb_ts_pad
434
+ nb_ts_pad = max_embed_dim - 1 - new_token_positions[:, -1]
435
+ if left_padding:
436
+ new_token_positions += nb_ts_pad[:, None]
437
+
438
+ text_to_overwrite = new_token_positions[batch_indices, non_ts_indices]
439
+
440
+ # 6. Final embedding and attention masks
441
+ final_embedding = torch.zeros(
442
+ batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device
443
+ )
444
+
445
+ final_attention_mask = torch.zeros(batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device)
446
+ for i in range(attention_mask.size(0)):
447
+ if left_padding:
448
+ final_attention_mask[i, max_embed_dim - attn_mask_cnt[i] :] = 1
449
+ else:
450
+ final_attention_mask[i, : attn_mask_cnt[i]] = 1
451
+
452
+ final_labels = None
453
+ if labels is not None:
454
+ final_labels = torch.full(
455
+ (batch_size, max_embed_dim), self.config.ignore_index, dtype=input_ids.dtype, device=input_ids.device
456
+ )
457
+
458
+ target_device = inputs_embeds.device
459
+ batch_indices, non_ts_indices, text_to_overwrite = (
460
+ batch_indices.to(target_device),
461
+ non_ts_indices.to(target_device),
462
+ text_to_overwrite.to(target_device),
463
+ )
464
+
465
+ # 7. Move embedding and labels to final positions
466
+ final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_ts_indices]
467
+ if labels is not None:
468
+ final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_ts_indices]
469
+
470
+ # 8. Move time series to final positions
471
+ ts_to_overwrite = torch.full(
472
+ (batch_size, max_embed_dim), True, dtype=torch.bool, device=inputs_embeds.device
473
+ )
474
+ ts_to_overwrite[batch_indices, text_to_overwrite] = False
475
+
476
+ reversed_cumsum = ts_to_overwrite.flip(dims=[-1]).cumsum(-1).flip(dims=[-1]) - 1
477
+ ts_to_overwrite &= reversed_cumsum >= nb_ts_pad[:, None].to(target_device)
478
+
479
+ # Check that the number of time series tokens is correct
480
+ if ts_to_overwrite.sum() != time_series_features.shape[:-1].numel():
481
+ raise ValueError(
482
+ f"The input provided to the model are wrong. The number of time series tokens is {torch.sum(special_ts_token_mask_start)} while"
483
+ f" the number of time series given to the model is {len(patch_cnt)}. This prevents correct indexing and breaks batch generation."
484
+ )
485
+ final_embedding[ts_to_overwrite] = time_series_features.contiguous().reshape(-1, embed_dim).to(target_device)
486
+ # if str(input_ids.device) == 'cuda:0':
487
+ # print(f"[EMBED] {final_embedding[ts_to_overwrite][0]=}")
488
+
489
+ # 9. Calculate position ids
490
+ position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1)
491
+ if position_ids.size(-1) < input_ids.size(-1):
492
+ position_ids = position_ids[:, -input_ids.size(-1) :]
493
+
494
+ # 10. Move attention mask to final positions
495
+ # print(f"{type(input_ids)=}, {input_ids.shape=}, {self.config.pad_token_id=}")
496
+ pad_batch_indices, pad_indices = torch.where(input_ids == self.config.pad_token_id)
497
+ if len(pad_batch_indices) > 0:
498
+ indices_to_mask = new_token_positions[pad_batch_indices, pad_indices]
499
+ final_embedding[pad_batch_indices, indices_to_mask] = 0
500
+
501
+ # 11. Post-process new_token_positions (set -1 for padding positions)
502
+ new_token_positions = new_token_positions.masked_fill(attention_mask == 0, -1)
503
+
504
+ return final_embedding, final_attention_mask, position_ids, final_labels, new_token_positions
505
+
506
+ @can_return_tuple
507
+ def forward(
508
+ self,
509
+ input_ids: Optional[torch.LongTensor] = None,
510
+ timeseries: torch.FloatTensor = None,
511
+ attention_mask: Optional[torch.Tensor] = None,
512
+ position_ids: Optional[torch.LongTensor] = None,
513
+ past_key_values: Optional[Cache] = None,
514
+ inputs_embeds: Optional[torch.FloatTensor] = None,
515
+ labels: Optional[torch.LongTensor] = None,
516
+ use_cache: Optional[bool] = None,
517
+ output_attentions: Optional[bool] = None,
518
+ output_hidden_states: Optional[bool] = None,
519
+ cache_position: Optional[torch.LongTensor] = None,
520
+ logits_to_keep: Union[int, torch.Tensor] = 0,
521
+ **kwargs: Unpack[KwargsForCausalLM],
522
+ ) -> Qwen3TSCausalLMOutputWithPast:
523
+ r"""
524
+ Args:
525
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
526
+ Indices of input sequence tokens in the vocabulary.
527
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
528
+ Mask to avoid performing attention on padding token indices.
529
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
530
+ Indices of positions of each input sequence tokens in the position embeddings.
531
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
532
+ Pre-computed hidden-states (key and values in the attention blocks).
533
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
534
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
535
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
536
+ Labels for computing the masked language modeling loss.
537
+ use_cache (`bool`, *optional*):
538
+ If set to `True`, `past_key_values` key value states are returned.
539
+ output_attentions (`bool`, *optional*):
540
+ Whether or not to return the attentions tensors of all attention layers.
541
+ output_hidden_states (`bool`, *optional*):
542
+ Whether or not to return the hidden states of all layers.
543
+ return_dict (`bool`, *optional*):
544
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
545
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
546
+ Indices depicting the position of the input sequence tokens in the sequence.
547
+ timeseries (`torch.FloatTensor` of shape `(batch_size, num_patches, patch_size)`, *optional*):
548
+ Timeseries data to be encoded and merged with text embeddings.
549
+
550
+ Returns:
551
+ [`Qwen3TSCausalLMOutputWithPast`] or `tuple(torch.FloatTensor)`:
552
+ The model outputs with potential timeseries-expanded attention mask.
553
+ """
554
+
555
+ # if input_ids is not None and timeseries is not None:
556
+ # # Print the input ts
557
+ # print("=================================================================")
558
+ # print("Timeseries shape:", timeseries.shape)
559
+ # print("=================================================================\n\n")
560
+ # else:
561
+ # print("Time series is None!!!!")
562
+
563
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
564
+ output_hidden_states = (
565
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
566
+ )
567
+
568
+ if inputs_embeds is None:
569
+ inputs_embeds = self.get_input_embeddings()(input_ids)
570
+
571
+ if timeseries is not None and timeseries.shape[0] > 0:
572
+ # use_cache = False
573
+ # print(f"timeseries shape: {timeseries.shape=}, {input_ids.shape=}")
574
+ ts_features, patch_cnt = self.ts_encoder(timeseries)
575
+ inputs_embeds = inputs_embeds.to(ts_features.dtype)
576
+ # if str(input_ids.device) == 'cuda:0':
577
+ # print(f"-------------------------------------------------------\n[before] {input_ids.shape=}, timeseries={timeseries.shape if timeseries is not None else None}, {attention_mask.sum(-1)=}")
578
+ inputs_embeds, attention_mask, position_ids, labels, new_token_positions = self._merge_input_ids_with_time_series_features(
579
+ ts_features, inputs_embeds, input_ids, attention_mask, labels, patch_cnt
580
+ )
581
+ # print(f"{inputs_embeds.shape=}, {attention_mask.shape=}, {position_ids.shape=}, {labels.shape=}")
582
+
583
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
584
+ # if str(input_ids.device) == 'cuda:0':
585
+ # print(f"[after] {inputs_embeds.shape=}, {attention_mask.sum(-1)=}, {position_ids.max(-1)=}, {cache_position=}")
586
+ outputs: BaseModelOutputWithPast = self.model(
587
+ attention_mask=attention_mask,
588
+ position_ids=position_ids,
589
+ past_key_values=past_key_values,
590
+ inputs_embeds=inputs_embeds,
591
+ use_cache=use_cache,
592
+ output_attentions=output_attentions,
593
+ output_hidden_states=output_hidden_states,
594
+ cache_position=cache_position,
595
+ **kwargs,
596
+ )
597
+
598
+ hidden_states = outputs.last_hidden_state
599
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
600
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
601
+ logits = self.lm_head(hidden_states[:, slice_indices, :])
602
+
603
+ loss = None
604
+ if labels is not None:
605
+ loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
606
+ # print(f"{logits.shape=}, {hidden_states.shape=}, {slice_indices=}, {logits_to_keep=}, labels={(labels != self.config.ignore_index).sum() if labels is not None else None}, {loss=}, {torch.sum(torch.isnan(logits))=}, {torch.sum(torch.isinf(logits))=}, {torch.sum(torch.isnan(hidden_states))=}, {torch.sum(torch.isinf(hidden_states))=}")
607
+
608
+ return Qwen3TSCausalLMOutputWithPast(
609
+ loss=loss,
610
+ logits=logits,
611
+ past_key_values=outputs.past_key_values,
612
+ hidden_states=outputs.hidden_states,
613
+ attentions=outputs.attentions,
614
+ attention_mask=attention_mask,
615
+ labels=labels,
616
+ new_token_positions=new_token_positions if timeseries is not None and timeseries.shape[0] > 0 else None,
617
+ )
618
+
619
+
620
+ __all__ = [
621
+ "Qwen3TSForCausalLM"
622
+ ]
processing_qwen3_ts.py ADDED
@@ -0,0 +1,224 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Tsinghua University and ByteDance.
3
+ #
4
+ # Licensed under the MIT License (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # https://opensource.org/license/mit
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import numpy as np
17
+ from typing import List, Union, Tuple, Optional
18
+ import torch
19
+
20
+ from transformers.feature_extraction_utils import BatchFeature
21
+ from transformers.processing_utils import ProcessorMixin
22
+ from transformers.tokenization_utils_base import PaddingStrategy
23
+
24
+ def sp_encoding(timeseries: np.ndarray, eots_token: bool = True) -> Tuple[np.ndarray, str, dict]:
25
+ """
26
+ Encodes a time series with scalar normalization.
27
+
28
+ Args:
29
+ timeseries (np.ndarray): The raw time series data (1D or 2D).
30
+
31
+ Returns:
32
+ result_timeseries (np.ndarray): The encoded time series, shape [seq_len, 1].
33
+ prompt (str): The placeholder string with offset and scaling info.
34
+ metadata (dict): Metadata containing the offset and scaling factor.
35
+ """
36
+ timeseries = np.array(timeseries)
37
+ mean = np.mean(timeseries)
38
+ scaled_timeseries = timeseries - mean
39
+ scale_factor = 1.0
40
+ if np.any(np.abs(scaled_timeseries) >= 3.0):
41
+ scale_factor = np.max(np.abs(scaled_timeseries)) / 3.0
42
+ scaled_timeseries /= scale_factor
43
+
44
+ prompt = f"[offset={-mean:.4f}|scaling={scale_factor:.4f}|length={len(timeseries)}|max={max(timeseries):.4f}|min={min(timeseries):.4f}|left={timeseries[0]:.4f}|right={timeseries[-1]:.4f}]<ts>"
45
+ if eots_token:
46
+ prompt += '<ts/>'
47
+
48
+ result_timeseries = np.stack([scaled_timeseries, np.ones_like(scaled_timeseries)], axis=-1).reshape(-1, 1)
49
+
50
+ return result_timeseries, prompt, {"offset": float(-mean), "scale_factor": float(scale_factor)}
51
+
52
+ class Qwen3TSProcessor(ProcessorMixin):
53
+ """
54
+ A processor for ChatTS that integrates text prompt processing and time series encoding.
55
+ """
56
+
57
+ attributes = ["tokenizer"]
58
+ feature_extractor_class = None # You can add a feature extractor if needed
59
+ tokenizer_class = "AutoTokenizer"
60
+
61
+ def __init__(self, tokenizer=None, chat_template=None, **kwargs):
62
+ """
63
+ Args:
64
+ tokenizer: An optional tokenizer to process text prompts.
65
+ """
66
+ if chat_template is None and tokenizer is not None and tokenizer.chat_template is not None:
67
+ chat_template = tokenizer.chat_template
68
+ self.chat_template = chat_template
69
+
70
+ super().__init__(tokenizer=tokenizer, chat_template=chat_template, **kwargs)
71
+
72
+ def __call__(
73
+ self,
74
+ text: Union[str, List[str]],
75
+ timeseries: Optional[List[List[np.ndarray]]] = None,
76
+ padding: Union[bool, str, PaddingStrategy] = False,
77
+ padding_side: str = 'left',
78
+ vllm_flag: bool = False,
79
+ tokenize: bool = True,
80
+ **kwargs,
81
+ ) -> BatchFeature:
82
+ """
83
+ Encodes a prompt and its associated time series.
84
+
85
+ Args:
86
+ prompt (List[str]): The input prompt containing <ts><ts/> placeholders.
87
+ timeseries (List[np.ndarray]): A list of time series matched to placeholders in the prompt.
88
+ padding (bool or str or PaddingStrategy, optional): Passed to the tokenizer for text padding.
89
+ return_tensors (str, optional): "pt" to return PyTorch tensors; None to return NumPy arrays.
90
+ **kwargs: Additional tokenizer parameters.
91
+
92
+ Returns:
93
+ BatchFeature: Contains processed prompt, encoded time series, and tokenizer outputs.
94
+ """
95
+ if type(text) == str:
96
+ text = [text]
97
+ if timeseries is None:
98
+ timeseries = []
99
+
100
+ reconstructed_prompts = []
101
+ concatenated_ts = None
102
+ ts_tokens = []
103
+
104
+ if vllm_flag:
105
+ # All prompt modifications have to be done inside of the vLLM
106
+ # to work correctly with its caching mechanism.
107
+ reconstructed_prompts = text
108
+
109
+ # Process timeseries data
110
+ encoded_ts_arrays = []
111
+ for ts in timeseries:
112
+ # Get the normalized data and prompt text
113
+ encoded_ts, ts_prompt, _ = sp_encoding(ts, eots_token=False)
114
+ # Tokenize the ts_prompt and add to the tokens list
115
+ if self.tokenizer is not None:
116
+ tokens = self.tokenizer.encode(ts_prompt, add_special_tokens=False)
117
+ ts_tokens.append(tokens)
118
+ encoded_ts_arrays.append(encoded_ts[None, ...])
119
+ else:
120
+ encoded_ts_arrays = []
121
+ total_ts_cnt = 0
122
+ for idx, prompt in enumerate(text):
123
+ # Split prompt by <ts><ts/> placeholders
124
+ last_ts_cnt = total_ts_cnt
125
+ prompt_segments = prompt.split("<ts><ts/>")
126
+ total_ts_cnt = total_ts_cnt + len(prompt_segments) - 1
127
+
128
+ # Encode each time series and rebuild the prompt
129
+ reconstructed_prompt = prompt_segments[0]
130
+
131
+ for i, ts in enumerate(timeseries[last_ts_cnt:total_ts_cnt]):
132
+ encoded_ts, ts_prompt, _ = sp_encoding(ts, eots_token=not vllm_flag)
133
+ reconstructed_prompt += ts_prompt + prompt_segments[i + 1]
134
+ # Ensure time series shape [1, seq_len, feature_dim] for batch concatenation
135
+ encoded_ts_arrays.append(encoded_ts[None, ...])
136
+
137
+ reconstructed_prompts.append(reconstructed_prompt)
138
+
139
+ if len(timeseries) != len(encoded_ts_arrays):
140
+ raise ValueError(
141
+ f"Mismatch between <ts><ts/> placeholders ({total_ts_cnt}) "
142
+ f"and time series ({len(encoded_ts_arrays)})."
143
+ )
144
+
145
+ if len(encoded_ts_arrays) > 0:
146
+ # Pad time series to the same length
147
+ max_length = max(ts.shape[1] for ts in encoded_ts_arrays)
148
+ padded_ts_arrays = [
149
+ np.pad(ts, ((0, 0), (0, max_length - ts.shape[1]), (0, 0)), mode="constant", constant_values=0.0)
150
+ for ts in encoded_ts_arrays
151
+ ]
152
+ concatenated_ts = np.concatenate(padded_ts_arrays, axis=0) # Shape: [batch_size, max_length, feature_dim]
153
+
154
+ # Convert to torch
155
+ concatenated_ts = torch.from_numpy(concatenated_ts).half()
156
+
157
+ # Tokenize the processed prompt
158
+ tokenizer_outputs = {}
159
+ if tokenize and self.tokenizer is not None:
160
+ tokenizer_outputs = self.tokenizer(reconstructed_prompts, padding=padding, padding_side=padding_side, **kwargs)
161
+ else:
162
+ tokenizer_outputs = {"text": reconstructed_prompts}
163
+
164
+ # Create the final output
165
+ outputs = tokenizer_outputs
166
+ if vllm_flag:
167
+ outputs["timeseries"] = zip(ts_tokens, encoded_ts_arrays)
168
+ elif concatenated_ts is not None:
169
+ outputs["timeseries"] = concatenated_ts
170
+
171
+ return BatchFeature(data=outputs)
172
+
173
+ def encode_timeseries(
174
+ self,
175
+ timeseries: Optional[List[List[np.ndarray]]] = None,
176
+ ) -> np.ndarray:
177
+ if timeseries is None:
178
+ timeseries = []
179
+
180
+ concatenated_ts = None
181
+ encoded_ts_arrays = []
182
+
183
+ for i, ts in enumerate(timeseries):
184
+ encoded_ts, _, _ = sp_encoding(ts)
185
+ # Ensure time series shape [1, seq_len, feature_dim] for batch concatenation
186
+ encoded_ts_arrays.append(encoded_ts[None, ...])
187
+
188
+ if len(encoded_ts_arrays) > 0:
189
+ # Pad time series to the same length
190
+ max_length = max(ts.shape[1] for ts in encoded_ts_arrays)
191
+ padded_ts_arrays = [
192
+ np.pad(ts, ((0, 0), (0, max_length - ts.shape[1]), (0, 0)), mode="constant", constant_values=0.0)
193
+ for ts in encoded_ts_arrays
194
+ ]
195
+ concatenated_ts = np.concatenate(padded_ts_arrays, axis=0) # Shape: [batch_size, max_length, feature_dim]
196
+
197
+ # Convert to torch
198
+ concatenated_ts = torch.from_numpy(concatenated_ts).half()
199
+
200
+ return concatenated_ts
201
+
202
+ @property
203
+ def model_input_names(self):
204
+ """
205
+ Define the input names expected by the model.
206
+ """
207
+ tokenizer_input_names = []
208
+ if self.tokenizer and hasattr(self.tokenizer, "model_input_names"):
209
+ tokenizer_input_names = self.tokenizer.model_input_names
210
+ return list(dict.fromkeys(["processed_prompt", "time_series"] + tokenizer_input_names))
211
+
212
+ def batch_decode(self, *args, **kwargs):
213
+ """
214
+ This method forwards all its arguments to Qwen3TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
215
+ refer to the docstring of this method for more information.
216
+ """
217
+ return self.tokenizer.batch_decode(*args, **kwargs)
218
+
219
+ def decode(self, *args, **kwargs):
220
+ """
221
+ This method forwards all its arguments to Qwen3TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
222
+ the docstring of this method for more information.
223
+ """
224
+ return self.tokenizer.decode(*args, **kwargs)
processor_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoProcessor": "processing_qwen3_ts.Qwen3TSProcessor"
4
+ },
5
+ "processor_class": "Qwen3TSProcessor"
6
+ }
pytorch_model-00001-of-00004.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f99f086fd1bf92bd3aab1bb91fee2c840df0af525f8038cae1d7b1b8900480ee
3
+ size 4902281803
pytorch_model-00002-of-00004.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8700532091097ce1c635bfcd6b3c3fe0da628a7d7def61fa16015a72f52a535
3
+ size 4915992380
pytorch_model-00003-of-00004.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0fb0a51248089c6b0a05086e5f32497cc14661530afca9aa42c70c1319577cc0
3
+ size 4983100114
pytorch_model-00004-of-00004.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b961b2c4237ebfb312192e27bfd3999d3488120fe152a98ad7f1294f179bcfa
3
+ size 1715871460
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,417 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16517105696
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00004-of-00004.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00004.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
10
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
11
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
12
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
13
+ "model.layers.0.self_attn.k_norm.weight": "pytorch_model-00001-of-00004.bin",
14
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
15
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
16
+ "model.layers.0.self_attn.q_norm.weight": "pytorch_model-00001-of-00004.bin",
17
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
18
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
19
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
20
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
21
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
22
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
23
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
24
+ "model.layers.1.self_attn.k_norm.weight": "pytorch_model-00001-of-00004.bin",
25
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
26
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
27
+ "model.layers.1.self_attn.q_norm.weight": "pytorch_model-00001-of-00004.bin",
28
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
29
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
30
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
31
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
32
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
33
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
34
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
35
+ "model.layers.10.self_attn.k_norm.weight": "pytorch_model-00002-of-00004.bin",
36
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
37
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
38
+ "model.layers.10.self_attn.q_norm.weight": "pytorch_model-00002-of-00004.bin",
39
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
40
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
41
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
42
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
43
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
44
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
45
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
46
+ "model.layers.11.self_attn.k_norm.weight": "pytorch_model-00002-of-00004.bin",
47
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
48
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
49
+ "model.layers.11.self_attn.q_norm.weight": "pytorch_model-00002-of-00004.bin",
50
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
51
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
52
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
53
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
54
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
55
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
56
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
57
+ "model.layers.12.self_attn.k_norm.weight": "pytorch_model-00002-of-00004.bin",
58
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
59
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
60
+ "model.layers.12.self_attn.q_norm.weight": "pytorch_model-00002-of-00004.bin",
61
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
62
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
63
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
64
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
65
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
66
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
67
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
68
+ "model.layers.13.self_attn.k_norm.weight": "pytorch_model-00002-of-00004.bin",
69
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
70
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
71
+ "model.layers.13.self_attn.q_norm.weight": "pytorch_model-00002-of-00004.bin",
72
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
73
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
74
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
75
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
76
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
77
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
78
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
79
+ "model.layers.14.self_attn.k_norm.weight": "pytorch_model-00002-of-00004.bin",
80
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
81
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
82
+ "model.layers.14.self_attn.q_norm.weight": "pytorch_model-00002-of-00004.bin",
83
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
84
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
85
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
86
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
87
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
88
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
89
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
90
+ "model.layers.15.self_attn.k_norm.weight": "pytorch_model-00002-of-00004.bin",
91
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
92
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
93
+ "model.layers.15.self_attn.q_norm.weight": "pytorch_model-00002-of-00004.bin",
94
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
95
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
96
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
97
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
98
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
99
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
100
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
101
+ "model.layers.16.self_attn.k_norm.weight": "pytorch_model-00002-of-00004.bin",
102
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
103
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
104
+ "model.layers.16.self_attn.q_norm.weight": "pytorch_model-00002-of-00004.bin",
105
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
106
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
107
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
108
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
109
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
110
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
111
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
112
+ "model.layers.17.self_attn.k_norm.weight": "pytorch_model-00002-of-00004.bin",
113
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
114
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
115
+ "model.layers.17.self_attn.q_norm.weight": "pytorch_model-00002-of-00004.bin",
116
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
117
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
118
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
119
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
120
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
121
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
122
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
123
+ "model.layers.18.self_attn.k_norm.weight": "pytorch_model-00002-of-00004.bin",
124
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
125
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
126
+ "model.layers.18.self_attn.q_norm.weight": "pytorch_model-00002-of-00004.bin",
127
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
128
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
129
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
130
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
131
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
132
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
133
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
134
+ "model.layers.19.self_attn.k_norm.weight": "pytorch_model-00002-of-00004.bin",
135
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
136
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
137
+ "model.layers.19.self_attn.q_norm.weight": "pytorch_model-00002-of-00004.bin",
138
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
139
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
140
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
141
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
142
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
143
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
144
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
145
+ "model.layers.2.self_attn.k_norm.weight": "pytorch_model-00001-of-00004.bin",
146
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
147
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
148
+ "model.layers.2.self_attn.q_norm.weight": "pytorch_model-00001-of-00004.bin",
149
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
150
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
151
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
152
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
153
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
154
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
155
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
156
+ "model.layers.20.self_attn.k_norm.weight": "pytorch_model-00002-of-00004.bin",
157
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
158
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
159
+ "model.layers.20.self_attn.q_norm.weight": "pytorch_model-00002-of-00004.bin",
160
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
161
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
162
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
163
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
164
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
165
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
166
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
167
+ "model.layers.21.self_attn.k_norm.weight": "pytorch_model-00002-of-00004.bin",
168
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
169
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
170
+ "model.layers.21.self_attn.q_norm.weight": "pytorch_model-00002-of-00004.bin",
171
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
172
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
173
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
174
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
175
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
176
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
177
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
178
+ "model.layers.22.self_attn.k_norm.weight": "pytorch_model-00002-of-00004.bin",
179
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
180
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
181
+ "model.layers.22.self_attn.q_norm.weight": "pytorch_model-00002-of-00004.bin",
182
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
183
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
184
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
185
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
186
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
187
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
188
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
189
+ "model.layers.23.self_attn.k_norm.weight": "pytorch_model-00003-of-00004.bin",
190
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
191
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
192
+ "model.layers.23.self_attn.q_norm.weight": "pytorch_model-00003-of-00004.bin",
193
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
194
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
195
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
196
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
197
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
198
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
199
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
200
+ "model.layers.24.self_attn.k_norm.weight": "pytorch_model-00003-of-00004.bin",
201
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
202
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
203
+ "model.layers.24.self_attn.q_norm.weight": "pytorch_model-00003-of-00004.bin",
204
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
205
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
206
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
207
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
208
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
209
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
210
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
211
+ "model.layers.25.self_attn.k_norm.weight": "pytorch_model-00003-of-00004.bin",
212
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
213
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
214
+ "model.layers.25.self_attn.q_norm.weight": "pytorch_model-00003-of-00004.bin",
215
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
216
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
217
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
218
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
219
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
220
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
221
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
222
+ "model.layers.26.self_attn.k_norm.weight": "pytorch_model-00003-of-00004.bin",
223
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
224
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
225
+ "model.layers.26.self_attn.q_norm.weight": "pytorch_model-00003-of-00004.bin",
226
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
227
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
228
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
229
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
230
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
231
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
232
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
233
+ "model.layers.27.self_attn.k_norm.weight": "pytorch_model-00003-of-00004.bin",
234
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
235
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
236
+ "model.layers.27.self_attn.q_norm.weight": "pytorch_model-00003-of-00004.bin",
237
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
238
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
239
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
240
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
241
+ "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
242
+ "model.layers.28.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
243
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
244
+ "model.layers.28.self_attn.k_norm.weight": "pytorch_model-00003-of-00004.bin",
245
+ "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
246
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
247
+ "model.layers.28.self_attn.q_norm.weight": "pytorch_model-00003-of-00004.bin",
248
+ "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
249
+ "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
250
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
251
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
252
+ "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
253
+ "model.layers.29.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
254
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
255
+ "model.layers.29.self_attn.k_norm.weight": "pytorch_model-00003-of-00004.bin",
256
+ "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
257
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
258
+ "model.layers.29.self_attn.q_norm.weight": "pytorch_model-00003-of-00004.bin",
259
+ "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
260
+ "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
261
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
262
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
263
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
264
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
265
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
266
+ "model.layers.3.self_attn.k_norm.weight": "pytorch_model-00001-of-00004.bin",
267
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
268
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
269
+ "model.layers.3.self_attn.q_norm.weight": "pytorch_model-00001-of-00004.bin",
270
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
271
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
272
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
273
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
274
+ "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
275
+ "model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
276
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
277
+ "model.layers.30.self_attn.k_norm.weight": "pytorch_model-00003-of-00004.bin",
278
+ "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
279
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
280
+ "model.layers.30.self_attn.q_norm.weight": "pytorch_model-00003-of-00004.bin",
281
+ "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
282
+ "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
283
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
284
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
285
+ "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
286
+ "model.layers.31.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
287
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
288
+ "model.layers.31.self_attn.k_norm.weight": "pytorch_model-00003-of-00004.bin",
289
+ "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
290
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
291
+ "model.layers.31.self_attn.q_norm.weight": "pytorch_model-00003-of-00004.bin",
292
+ "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
293
+ "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
294
+ "model.layers.32.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
295
+ "model.layers.32.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
296
+ "model.layers.32.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
297
+ "model.layers.32.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
298
+ "model.layers.32.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
299
+ "model.layers.32.self_attn.k_norm.weight": "pytorch_model-00003-of-00004.bin",
300
+ "model.layers.32.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
301
+ "model.layers.32.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
302
+ "model.layers.32.self_attn.q_norm.weight": "pytorch_model-00003-of-00004.bin",
303
+ "model.layers.32.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
304
+ "model.layers.32.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
305
+ "model.layers.33.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
306
+ "model.layers.33.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
307
+ "model.layers.33.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
308
+ "model.layers.33.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
309
+ "model.layers.33.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
310
+ "model.layers.33.self_attn.k_norm.weight": "pytorch_model-00003-of-00004.bin",
311
+ "model.layers.33.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
312
+ "model.layers.33.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
313
+ "model.layers.33.self_attn.q_norm.weight": "pytorch_model-00003-of-00004.bin",
314
+ "model.layers.33.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
315
+ "model.layers.33.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
316
+ "model.layers.34.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
317
+ "model.layers.34.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
318
+ "model.layers.34.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
319
+ "model.layers.34.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
320
+ "model.layers.34.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
321
+ "model.layers.34.self_attn.k_norm.weight": "pytorch_model-00003-of-00004.bin",
322
+ "model.layers.34.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
323
+ "model.layers.34.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
324
+ "model.layers.34.self_attn.q_norm.weight": "pytorch_model-00003-of-00004.bin",
325
+ "model.layers.34.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
326
+ "model.layers.34.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
327
+ "model.layers.35.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
328
+ "model.layers.35.mlp.down_proj.weight": "pytorch_model-00004-of-00004.bin",
329
+ "model.layers.35.mlp.gate_proj.weight": "pytorch_model-00004-of-00004.bin",
330
+ "model.layers.35.mlp.up_proj.weight": "pytorch_model-00004-of-00004.bin",
331
+ "model.layers.35.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
332
+ "model.layers.35.self_attn.k_norm.weight": "pytorch_model-00004-of-00004.bin",
333
+ "model.layers.35.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
334
+ "model.layers.35.self_attn.o_proj.weight": "pytorch_model-00004-of-00004.bin",
335
+ "model.layers.35.self_attn.q_norm.weight": "pytorch_model-00004-of-00004.bin",
336
+ "model.layers.35.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
337
+ "model.layers.35.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
338
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
339
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
340
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
341
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
342
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
343
+ "model.layers.4.self_attn.k_norm.weight": "pytorch_model-00001-of-00004.bin",
344
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
345
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
346
+ "model.layers.4.self_attn.q_norm.weight": "pytorch_model-00001-of-00004.bin",
347
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
348
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
349
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
350
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
351
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
352
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
353
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
354
+ "model.layers.5.self_attn.k_norm.weight": "pytorch_model-00001-of-00004.bin",
355
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
356
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
357
+ "model.layers.5.self_attn.q_norm.weight": "pytorch_model-00001-of-00004.bin",
358
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
359
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
360
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
361
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
362
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
363
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
364
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
365
+ "model.layers.6.self_attn.k_norm.weight": "pytorch_model-00001-of-00004.bin",
366
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
367
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
368
+ "model.layers.6.self_attn.q_norm.weight": "pytorch_model-00001-of-00004.bin",
369
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
370
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
371
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
372
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
373
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
374
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
375
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
376
+ "model.layers.7.self_attn.k_norm.weight": "pytorch_model-00001-of-00004.bin",
377
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
378
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
379
+ "model.layers.7.self_attn.q_norm.weight": "pytorch_model-00001-of-00004.bin",
380
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
381
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
382
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
383
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
384
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
385
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
386
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
387
+ "model.layers.8.self_attn.k_norm.weight": "pytorch_model-00001-of-00004.bin",
388
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
389
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
390
+ "model.layers.8.self_attn.q_norm.weight": "pytorch_model-00001-of-00004.bin",
391
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
392
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
393
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
394
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
395
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
396
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
397
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
398
+ "model.layers.9.self_attn.k_norm.weight": "pytorch_model-00001-of-00004.bin",
399
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
400
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
401
+ "model.layers.9.self_attn.q_norm.weight": "pytorch_model-00001-of-00004.bin",
402
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
403
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
404
+ "model.norm.weight": "pytorch_model-00004-of-00004.bin",
405
+ "ts_encoder.mlp.0.bias": "pytorch_model-00004-of-00004.bin",
406
+ "ts_encoder.mlp.0.weight": "pytorch_model-00004-of-00004.bin",
407
+ "ts_encoder.mlp.2.bias": "pytorch_model-00004-of-00004.bin",
408
+ "ts_encoder.mlp.2.weight": "pytorch_model-00004-of-00004.bin",
409
+ "ts_encoder.mlp.4.bias": "pytorch_model-00004-of-00004.bin",
410
+ "ts_encoder.mlp.4.weight": "pytorch_model-00004-of-00004.bin",
411
+ "ts_encoder.mlp.6.bias": "pytorch_model-00004-of-00004.bin",
412
+ "ts_encoder.mlp.6.weight": "pytorch_model-00004-of-00004.bin",
413
+ "ts_encoder.mlp.8.bias": "pytorch_model-00004-of-00004.bin",
414
+ "ts_encoder.mlp.8.weight": "pytorch_model-00004-of-00004.bin",
415
+ "ts_encoder.position_embedding.weight": "pytorch_model-00004-of-00004.bin"
416
+ }
417
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<ts>",
4
+ "<ts/>"
5
+ ],
6
+ "eos_token": {
7
+ "content": "<|im_end|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "pad_token": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ }
20
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f58249c804f02dc95986d90822c6ca889b91cfdd40befa5066ff7d50fce80342
3
+ size 11423017
tokenizer_config.json ADDED
@@ -0,0 +1,249 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<tool_response>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "151666": {
190
+ "content": "</tool_response>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "151667": {
198
+ "content": "<think>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "151668": {
206
+ "content": "</think>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ },
213
+ "151669": {
214
+ "content": "<ts>",
215
+ "lstrip": false,
216
+ "normalized": false,
217
+ "rstrip": false,
218
+ "single_word": false,
219
+ "special": true
220
+ },
221
+ "151670": {
222
+ "content": "<ts/>",
223
+ "lstrip": false,
224
+ "normalized": false,
225
+ "rstrip": false,
226
+ "single_word": false,
227
+ "special": true
228
+ }
229
+ },
230
+ "additional_special_tokens": [
231
+ "<ts>",
232
+ "<ts/>"
233
+ ],
234
+ "auto_map": {
235
+ "AutoProcessor": "processing_qwen3_ts.Qwen3TSProcessor"
236
+ },
237
+ "bos_token": null,
238
+ "clean_up_tokenization_spaces": false,
239
+ "eos_token": "<|im_end|>",
240
+ "errors": "replace",
241
+ "extra_special_tokens": {},
242
+ "model_max_length": 131072,
243
+ "pad_token": "<|endoftext|>",
244
+ "padding_side": "right",
245
+ "processor_class": "Qwen3TSProcessor",
246
+ "split_special_tokens": false,
247
+ "tokenizer_class": "Qwen2Tokenizer",
248
+ "unk_token": null
249
+ }
trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2875c51ada563e5aedfdeacfcafff7e1c038724a25627f0d30a0b6b74d6c18bc
3
+ size 7480
vocab.json ADDED
The diff for this file is too large to render. See raw diff