update model inference with pipeline
Browse files
README.md
CHANGED
@@ -26,7 +26,7 @@ The model is based on the [ClinicalBERT - Bio + Discharge Summary BERT Model](ht
|
|
26 |
|
27 |
You can load the model via the transformers library:
|
28 |
```
|
29 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
30 |
tokenizer = AutoTokenizer.from_pretrained("bvanaken/clinical-assertion-negation-bert")
|
31 |
model = AutoModelForSequenceClassification.from_pretrained("bvanaken/clinical-assertion-negation-bert")
|
32 |
|
@@ -38,11 +38,10 @@ Example input and inference:
|
|
38 |
```
|
39 |
input = "The patient recovered during the night and now denies any [entity] shortness of breath [entity]."
|
40 |
|
41 |
-
|
42 |
-
output = model(**tokenized_input)
|
43 |
|
44 |
-
|
45 |
-
|
46 |
```
|
47 |
|
48 |
### Cite
|
|
|
26 |
|
27 |
You can load the model via the transformers library:
|
28 |
```
|
29 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TextClassificationPipeline
|
30 |
tokenizer = AutoTokenizer.from_pretrained("bvanaken/clinical-assertion-negation-bert")
|
31 |
model = AutoModelForSequenceClassification.from_pretrained("bvanaken/clinical-assertion-negation-bert")
|
32 |
|
|
|
38 |
```
|
39 |
input = "The patient recovered during the night and now denies any [entity] shortness of breath [entity]."
|
40 |
|
41 |
+
classifier = TextClassificationPipeline(model=model, tokenizer=tokenizer)
|
|
|
42 |
|
43 |
+
classification = classifier(input)
|
44 |
+
# [{'label': 'ABSENT', 'score': 0.9842607378959656}]
|
45 |
```
|
46 |
|
47 |
### Cite
|