butyuhao commited on
Commit
0a962e8
1 Parent(s): f101f59
added_tokens.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<eot>": 64005,
3
+ "<|assistant|>": 64001,
4
+ "<|inner_thoughts|>": 64004,
5
+ "<|prefix_begin|>": 64002,
6
+ "<|prefix_end|>": 64000,
7
+ "<|prompter|>": 64006,
8
+ "<|system|>": 64003
9
+ }
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "_name_or_path": "/mnt/petrelfs/chenqin.p/dyh/educhat-base-002-13b-baichuan/",
4
+ "architectures": [
5
+ "BaichuanForCausalLM"
6
+ ],
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_baichuan.BaichuanConfig",
9
+ "AutoModelForCausalLM": "modeling_baichuan.BaichuanForCausalLM"
10
+ },
11
+ "bos_token_id": 1,
12
+ "eos_token_id": 2,
13
+ "hidden_act": "silu",
14
+ "hidden_size": 5120,
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 13696,
17
+ "model_max_length": 4096,
18
+ "model_type": "baichuan",
19
+ "num_attention_heads": 40,
20
+ "num_hidden_layers": 40,
21
+ "pad_token_id": 0,
22
+ "rms_norm_eps": 1e-06,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "float16",
25
+ "transformers_version": "4.31.0",
26
+ "use_cache": true,
27
+ "vocab_size": 64016
28
+ }
configuration_baichuan.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023, Baichuan Intelligent Technology. All rights reserved.
2
+
3
+ from transformers.configuration_utils import PretrainedConfig
4
+
5
+ class BaichuanConfig(PretrainedConfig):
6
+ model_type = "baichuan"
7
+ keys_to_ignore_at_inference = ["past_key_values"]
8
+
9
+ def __init__(
10
+ self,
11
+ vocab_size=64000,
12
+ hidden_size=5120,
13
+ intermediate_size=13696,
14
+ num_hidden_layers=40,
15
+ num_attention_heads=40,
16
+ hidden_act="silu",
17
+ model_max_length=4096,
18
+ initializer_range=0.02,
19
+ rms_norm_eps=1e-6,
20
+ use_cache=True,
21
+ pad_token_id=0,
22
+ bos_token_id=1,
23
+ eos_token_id=2,
24
+ tie_word_embeddings=False,
25
+ gradient_checkpointing=False,
26
+ **kwargs,
27
+ ):
28
+ self.vocab_size = vocab_size
29
+ self.model_max_length = model_max_length
30
+ self.hidden_size = hidden_size
31
+ self.intermediate_size = intermediate_size
32
+ self.num_hidden_layers = num_hidden_layers
33
+ self.num_attention_heads = num_attention_heads
34
+ self.hidden_act = hidden_act
35
+ self.initializer_range = initializer_range
36
+ self.rms_norm_eps = rms_norm_eps
37
+ self.use_cache = use_cache
38
+ self.gradient_checkpointing = gradient_checkpointing,
39
+ super().__init__(
40
+ pad_token_id=pad_token_id,
41
+ bos_token_id=bos_token_id,
42
+ eos_token_id=eos_token_id,
43
+ tie_word_embeddings=tie_word_embeddings,
44
+ **kwargs,
45
+ )
46
+
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.31.0"
7
+ }
generation_utils.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List
2
+ from queue import Queue
3
+
4
+ import torch
5
+
6
+
7
+ def build_chat_input(model, tokenizer, messages: List[dict], max_new_tokens: int=0):
8
+ def _parse_messages(messages, split_role="user"):
9
+ system, rounds = "", []
10
+ round = []
11
+ for i, message in enumerate(messages):
12
+ if message["role"] == "system":
13
+ assert i == 0
14
+ system = message["content"]
15
+ continue
16
+ if message["role"] == split_role and round:
17
+ rounds.append(round)
18
+ round = []
19
+ round.append(message)
20
+ if round:
21
+ rounds.append(round)
22
+ return system, rounds
23
+
24
+ max_new_tokens = max_new_tokens or model.generation_config.max_new_tokens
25
+ max_input_tokens = model.config.model_max_length - max_new_tokens
26
+ system, rounds = _parse_messages(messages, split_role="user")
27
+ system_tokens = tokenizer.encode(system)
28
+ max_history_tokens = max_input_tokens - len(system_tokens)
29
+
30
+ history_tokens = []
31
+ for round in rounds[::-1]:
32
+ round_tokens = []
33
+ for message in round:
34
+ if message["role"] == "user":
35
+ round_tokens.append(model.generation_config.user_token_id)
36
+ else:
37
+ round_tokens.append(model.generation_config.assistant_token_id)
38
+ round_tokens.extend(tokenizer.encode(message["content"]))
39
+ if len(history_tokens) == 0 or len(history_tokens) + len(round_tokens) <= max_history_tokens:
40
+ history_tokens = round_tokens + history_tokens # concat left
41
+ if len(history_tokens) < max_history_tokens:
42
+ continue
43
+ break
44
+
45
+ input_tokens = system_tokens + history_tokens
46
+ if messages[-1]["role"] != "assistant":
47
+ input_tokens.append(model.generation_config.assistant_token_id)
48
+ input_tokens = input_tokens[-max_input_tokens:] # truncate left
49
+ return torch.LongTensor([input_tokens]).to(model.device)
50
+
51
+
52
+ class TextIterStreamer:
53
+ def __init__(self, tokenizer, skip_prompt=False, skip_special_tokens=False):
54
+ self.tokenizer = tokenizer
55
+ self.skip_prompt = skip_prompt
56
+ self.skip_special_tokens = skip_special_tokens
57
+ self.tokens = []
58
+ self.text_queue = Queue()
59
+ self.next_tokens_are_prompt = True
60
+
61
+ def put(self, value):
62
+ if self.skip_prompt and self.next_tokens_are_prompt:
63
+ self.next_tokens_are_prompt = False
64
+ else:
65
+ if len(value.shape) > 1:
66
+ value = value[0]
67
+ self.tokens.extend(value.tolist())
68
+ self.text_queue.put(
69
+ self.tokenizer.decode(self.tokens, skip_special_tokens=self.skip_special_tokens))
70
+
71
+ def end(self):
72
+ self.text_queue.put(None)
73
+
74
+ def __iter__(self):
75
+ return self
76
+
77
+ def __next__(self):
78
+ value = self.text_queue.get()
79
+ if value is None:
80
+ raise StopIteration()
81
+ else:
82
+ return value
modeling_baichuan.py ADDED
@@ -0,0 +1,572 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023, Baichuan Intelligent Technology. All rights reserved.
2
+
3
+ import math
4
+ from threading import Thread
5
+ from typing import List, Optional, Tuple, Union
6
+
7
+ import torch
8
+ import torch.utils.checkpoint
9
+ from torch.nn import CrossEntropyLoss
10
+ from transformers import PreTrainedModel
11
+ from transformers.activations import ACT2FN
12
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
13
+ from transformers.utils import logging
14
+ from transformers.generation.utils import GenerationConfig
15
+
16
+ from .configuration_baichuan import BaichuanConfig
17
+ from .generation_utils import build_chat_input, TextIterStreamer
18
+
19
+ logger = logging.get_logger(__name__)
20
+
21
+
22
+ def _get_interleave(n):
23
+ def _get_interleave_power_of_2(n):
24
+ start = (2 ** (-2 ** -(math.log2(n) - 3)))
25
+ ratio = start
26
+ return [start * ratio ** i for i in range(n)]
27
+
28
+ if math.log2(n).is_integer():
29
+ return _get_interleave_power_of_2(n)
30
+ else:
31
+ closest_power_of_2 = 2 ** math.floor(math.log2(n))
32
+ return _get_interleave_power_of_2(closest_power_of_2) + \
33
+ _get_interleave(2 * closest_power_of_2)[0::2][:n - closest_power_of_2]
34
+
35
+ def _fill_with_neg_inf(t):
36
+ """FP16-compatible function that fills a tensor with -inf."""
37
+ return t.float().fill_(float("-inf")).type_as(t)
38
+
39
+ def _gen_alibi_mask(n_head, max_pos):
40
+ """used in inference only"""
41
+ slopes = torch.Tensor(_get_interleave(n_head))
42
+ alibi = slopes.unsqueeze(1).unsqueeze(1) * torch.arange(max_pos).unsqueeze(0).unsqueeze(0).expand(
43
+ n_head, -1, -1)
44
+ alibi = alibi.view(n_head, 1, max_pos)
45
+ alibi_mask = torch.triu(
46
+ _fill_with_neg_inf(torch.zeros([max_pos, max_pos])), 1
47
+ )
48
+ alibi_mask = alibi_mask.unsqueeze(0) + alibi
49
+ return alibi_mask
50
+
51
+ def _buffered_future_mask(tensor, maxpos, alibi, attn_heads):
52
+ """used in training only"""
53
+ dim = tensor.size(1)
54
+ _future_mask = torch.triu(
55
+ _fill_with_neg_inf(torch.zeros([maxpos, maxpos])), 1
56
+ )
57
+ _future_mask = _future_mask.unsqueeze(0) + alibi
58
+ _future_mask = _future_mask.to(tensor)
59
+ return _future_mask[:tensor.shape[0] * attn_heads, :maxpos, :maxpos]
60
+
61
+
62
+ class RMSNorm(torch.nn.Module):
63
+ def __init__(self, hidden_size, epsilon=1e-6):
64
+ super().__init__()
65
+ self.weight = torch.nn.Parameter(torch.empty(hidden_size))
66
+ self.epsilon = epsilon
67
+
68
+ def forward(self, hidden_states):
69
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
70
+ hidden_states = hidden_states * torch.rsqrt(variance + self.epsilon)
71
+
72
+ # convert into half-precision
73
+ if self.weight.dtype in [torch.float16, torch.bfloat16]:
74
+ hidden_states = hidden_states.to(self.weight.dtype)
75
+
76
+ return self.weight * hidden_states
77
+
78
+
79
+ class MLP(torch.nn.Module):
80
+ def __init__(
81
+ self,
82
+ hidden_size: int,
83
+ intermediate_size: int,
84
+ hidden_act: str,
85
+ ):
86
+ super().__init__()
87
+ self.gate_proj = torch.nn.Linear(hidden_size, intermediate_size, bias=False)
88
+ self.down_proj = torch.nn.Linear(intermediate_size, hidden_size, bias=False)
89
+ self.up_proj = torch.nn.Linear(hidden_size, intermediate_size, bias=False)
90
+ self.act_fn = ACT2FN[hidden_act]
91
+
92
+ def forward(self, x):
93
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
94
+
95
+
96
+ class BaichuanAttention(torch.nn.Module):
97
+ def __init__(self, config: BaichuanConfig):
98
+ super().__init__()
99
+ self.config = config
100
+ self.hidden_size = config.hidden_size
101
+ self.num_heads = config.num_attention_heads
102
+ self.head_dim = self.hidden_size // self.num_heads
103
+ self.max_position_embeddings = config.model_max_length
104
+
105
+ if (self.head_dim * self.num_heads) != self.hidden_size:
106
+ raise ValueError(
107
+ f"hidden_size {self.hidden_size} is not divisible by num_heads {self.num_heads}"
108
+ )
109
+ self.W_pack = torch.nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False)
110
+ self.o_proj = torch.nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
111
+
112
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
113
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
114
+
115
+ def forward(
116
+ self,
117
+ hidden_states: torch.Tensor,
118
+ attention_mask: Optional[torch.Tensor] = None,
119
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
120
+ output_attentions: bool = False,
121
+ use_cache: bool = False,
122
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
123
+
124
+ bsz, q_len, _ = hidden_states.size()
125
+
126
+ proj = self.W_pack(hidden_states)
127
+ proj = proj.unflatten(-1, (3, self.hidden_size)).unsqueeze(0).transpose(0, -2).squeeze(-2)
128
+ query_states = proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
129
+ key_states = proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
130
+ value_states = proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
131
+
132
+ kv_seq_len = key_states.shape[-2]
133
+ if past_key_value is not None:
134
+ kv_seq_len += past_key_value[0].shape[-2]
135
+
136
+ if past_key_value is not None:
137
+ # reuse k, v, self_attention
138
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
139
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
140
+
141
+ past_key_value = (key_states, value_states) if use_cache else None
142
+
143
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
144
+
145
+ if attention_mask is not None:
146
+ if q_len == 1: # inference with cache
147
+ if len(attention_mask.size()) == 4:
148
+ attention_mask = attention_mask[:, :, -1:, :]
149
+ else:
150
+ attention_mask = attention_mask[:, -1:, :]
151
+ attn_weights = attn_weights + attention_mask
152
+ attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
153
+
154
+ attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
155
+
156
+ attn_output = torch.matmul(attn_weights, value_states)
157
+
158
+ attn_output = attn_output.transpose(1, 2)
159
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
160
+ attn_output = self.o_proj(attn_output)
161
+
162
+ if not output_attentions:
163
+ attn_weights = None
164
+
165
+ return attn_output, attn_weights, past_key_value
166
+
167
+
168
+ class BaichuanLayer(torch.nn.Module):
169
+ def __init__(self, config: BaichuanConfig):
170
+ super().__init__()
171
+ self.hidden_size = config.hidden_size
172
+ self.self_attn = BaichuanAttention(config=config)
173
+ self.mlp = MLP(
174
+ hidden_size=self.hidden_size,
175
+ intermediate_size=config.intermediate_size,
176
+ hidden_act=config.hidden_act,
177
+ )
178
+ self.input_layernorm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps)
179
+ self.post_attention_layernorm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps)
180
+
181
+ def forward(
182
+ self,
183
+ hidden_states: torch.Tensor,
184
+ attention_mask: Optional[torch.Tensor] = None,
185
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
186
+ output_attentions: Optional[bool] = False,
187
+ use_cache: Optional[bool] = False,
188
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
189
+
190
+ residual = hidden_states
191
+
192
+ hidden_states = self.input_layernorm(hidden_states)
193
+
194
+ # Self Attention
195
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
196
+ hidden_states=hidden_states,
197
+ attention_mask=attention_mask,
198
+ past_key_value=past_key_value,
199
+ output_attentions=output_attentions,
200
+ use_cache=use_cache,
201
+ )
202
+ hidden_states = residual + hidden_states
203
+
204
+ # Fully Connected
205
+ residual = hidden_states
206
+ hidden_states = self.post_attention_layernorm(hidden_states)
207
+ hidden_states = self.mlp(hidden_states)
208
+ hidden_states = residual + hidden_states
209
+
210
+ outputs = (hidden_states,)
211
+
212
+ if use_cache:
213
+ outputs += (present_key_value,)
214
+
215
+ return outputs
216
+
217
+
218
+ class BaichuanPreTrainedModel(PreTrainedModel):
219
+ config_class = BaichuanConfig
220
+ base_model_prefix = "model"
221
+ supports_gradient_checkpointing = True
222
+ _no_split_modules = ["BaichuanLayer"]
223
+ _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
224
+
225
+ def _init_weights(self, module):
226
+ std = self.config.initializer_range
227
+ if isinstance(module, torch.nn.Linear):
228
+ module.weight.data.normal_(mean=0.0, std=std)
229
+ if module.bias is not None:
230
+ module.bias.data.zero_()
231
+ elif isinstance(module, torch.nn.Embedding):
232
+ module.weight.data.normal_(mean=0.0, std=std)
233
+ if module.padding_idx is not None:
234
+ module.weight.data[module.padding_idx].zero_()
235
+
236
+ def _set_gradient_checkpointing(self, module, value=False):
237
+ if isinstance(module, BaichuanModel):
238
+ module.gradient_checkpointing = value
239
+
240
+
241
+ class BaichuanModel(BaichuanPreTrainedModel):
242
+ def __init__(self, config: BaichuanConfig):
243
+ super().__init__(config)
244
+ self.padding_idx = config.pad_token_id
245
+ self.vocab_size = config.vocab_size
246
+ self.n_head = config.num_attention_heads
247
+ self.embed_tokens = torch.nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
248
+ self.layers = torch.nn.ModuleList([BaichuanLayer(config) for _ in range(config.num_hidden_layers)])
249
+ self.norm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps)
250
+
251
+ self.gradient_checkpointing = config.gradient_checkpointing
252
+ self.post_init()
253
+ self.max_cache_pos = config.model_max_length
254
+ self.first_run = True
255
+ self.alibi_mask = None
256
+
257
+ def get_input_embeddings(self):
258
+ return self.embed_tokens
259
+
260
+ def set_input_embeddings(self, value):
261
+ self.embed_tokens = value
262
+
263
+ def get_alibi_mask(self, tensor, seq_length_with_past):
264
+ if self.training:
265
+ slopes = torch.Tensor(_get_interleave(self.n_head))
266
+ alibi = slopes.unsqueeze(1).unsqueeze(1) * torch.arange(seq_length_with_past).unsqueeze(0).unsqueeze(0).expand(
267
+ self.n_head,
268
+ -1, -1)
269
+ alibi = alibi.view(self.n_head, 1, seq_length_with_past)
270
+ mask = _buffered_future_mask(tensor, seq_length_with_past, alibi, self.n_head)
271
+ else:
272
+ if self.first_run:
273
+ self.first_run = False
274
+ self.register_buffer("future_mask", _gen_alibi_mask(self.n_head, self.max_cache_pos).to(tensor), persistent=False)
275
+ if seq_length_with_past > self.max_cache_pos:
276
+ self.max_cache_pos = seq_length_with_past
277
+ self.register_buffer("future_mask", _gen_alibi_mask(self.n_head, self.max_cache_pos).to(tensor), persistent=False)
278
+ mask = self.future_mask[:self.n_head, :seq_length_with_past, :seq_length_with_past]
279
+ return mask
280
+
281
+ def forward(
282
+ self,
283
+ input_ids: torch.LongTensor = None,
284
+ attention_mask: Optional[torch.Tensor] = None,
285
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
286
+ inputs_embeds: Optional[torch.FloatTensor] = None,
287
+ use_cache: Optional[bool] = False,
288
+ output_attentions: Optional[bool] = False,
289
+ output_hidden_states: Optional[bool] = False,
290
+ return_dict: Optional[bool] = True,
291
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
292
+
293
+ if input_ids is not None and inputs_embeds is not None:
294
+ raise ValueError("You cannot provide both input_ids and inputs_embeds simultaneously")
295
+ elif input_ids is not None:
296
+ batch_size, seq_length = input_ids.shape
297
+ elif inputs_embeds is not None:
298
+ batch_size, seq_length, _ = inputs_embeds.shape
299
+ else:
300
+ raise ValueError("You need to provide input_ids or inputs_embeds")
301
+
302
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
303
+
304
+ seq_length_with_past = seq_length
305
+
306
+ if past_key_values is not None:
307
+ past_key_values_length = past_key_values[0][0].shape[2]
308
+ seq_length_with_past = seq_length_with_past + past_key_values_length
309
+
310
+ if inputs_embeds is None:
311
+ inputs_embeds = self.embed_tokens(input_ids)
312
+
313
+ if self.training:
314
+ if self.alibi_mask is None or self.alibi_mask.shape[-1] != seq_length_with_past:
315
+ self.alibi_mask = self.get_alibi_mask(inputs_embeds, seq_length_with_past)
316
+ alibi_mask = self.alibi_mask
317
+ else:
318
+ alibi_mask = self.get_alibi_mask(inputs_embeds, seq_length_with_past)
319
+
320
+ if attention_mask is not None:
321
+ if len(attention_mask.shape) == 2:
322
+ expanded_mask = attention_mask.to(alibi_mask.dtype)
323
+ expanded_mask = torch.tril(torch.gt(expanded_mask[:, :, None] * expanded_mask[:, None, :], 0)
324
+ ) * torch.eq(expanded_mask[:, :, None] - expanded_mask[:, None, :], 0)
325
+ else:
326
+ expanded_mask = attention_mask
327
+ bsz = inputs_embeds.size(0)
328
+ src_len, tgt_len = alibi_mask.size()[-2:]
329
+ expanded_mask = expanded_mask.unsqueeze(1).expand(bsz, 1, src_len, tgt_len).to(alibi_mask.dtype)
330
+ inverted_mask = 1.0 - expanded_mask
331
+ inverted_mask = inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(alibi_mask.dtype).min)
332
+ attention_mask = inverted_mask + alibi_mask.unsqueeze(0)
333
+ else:
334
+ attention_mask = alibi_mask
335
+
336
+ hidden_states = inputs_embeds
337
+
338
+ if self.gradient_checkpointing and self.training:
339
+ if use_cache:
340
+ logger.warning_once(
341
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
342
+ )
343
+ use_cache = False
344
+
345
+ # decoder layers
346
+ all_hidden_states = () if output_hidden_states else None
347
+ all_self_attns = () if output_attentions else None
348
+ next_decoder_cache = () if use_cache else None
349
+
350
+ for idx, decoder_layer in enumerate(self.layers):
351
+ if output_hidden_states:
352
+ all_hidden_states += (hidden_states,)
353
+
354
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
355
+
356
+ if self.gradient_checkpointing and self.training:
357
+
358
+ def create_custom_forward(module):
359
+ def custom_forward(*inputs):
360
+ # None for past_key_value
361
+ return module(*inputs, output_attentions, None)
362
+
363
+ return custom_forward
364
+
365
+ layer_outputs = torch.utils.checkpoint.checkpoint(
366
+ create_custom_forward(decoder_layer),
367
+ hidden_states,
368
+ attention_mask,
369
+ None,
370
+ )
371
+ else:
372
+ layer_outputs = decoder_layer(
373
+ hidden_states,
374
+ attention_mask=attention_mask,
375
+ past_key_value=past_key_value,
376
+ output_attentions=output_attentions,
377
+ use_cache=use_cache,
378
+ )
379
+
380
+ hidden_states = layer_outputs[0]
381
+
382
+ if use_cache:
383
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
384
+
385
+ if output_attentions:
386
+ all_self_attns += (layer_outputs[1],)
387
+
388
+ hidden_states = self.norm(hidden_states)
389
+
390
+ # add hidden states from the last decoder layer
391
+ if output_hidden_states:
392
+ all_hidden_states += (hidden_states,)
393
+
394
+ next_cache = next_decoder_cache if use_cache else None
395
+ if not return_dict:
396
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
397
+ return BaseModelOutputWithPast(
398
+ last_hidden_state=hidden_states,
399
+ past_key_values=next_cache,
400
+ hidden_states=all_hidden_states,
401
+ attentions=all_self_attns,
402
+ )
403
+
404
+
405
+ class BaichuanForCausalLM(BaichuanPreTrainedModel):
406
+ def __init__(self, config):
407
+ super().__init__(config)
408
+ self.model = BaichuanModel(config)
409
+ self.lm_head = torch.nn.Linear(config.hidden_size, config.vocab_size, bias=False)
410
+
411
+ # Initialize weights and apply final processing
412
+ self.post_init()
413
+
414
+ def get_input_embeddings(self):
415
+ return self.model.embed_tokens
416
+
417
+ def set_input_embeddings(self, value):
418
+ self.model.embed_tokens = value
419
+
420
+ def get_output_embeddings(self):
421
+ return self.lm_head
422
+
423
+ def set_output_embeddings(self, new_embeddings):
424
+ self.lm_head = new_embeddings
425
+
426
+ def set_decoder(self, decoder):
427
+ self.model = decoder
428
+
429
+ def get_decoder(self):
430
+ return self.model
431
+
432
+ def forward(
433
+ self,
434
+ input_ids: torch.LongTensor = None,
435
+ attention_mask: Optional[torch.Tensor] = None,
436
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
437
+ inputs_embeds: Optional[torch.FloatTensor] = None,
438
+ labels: Optional[torch.LongTensor] = None,
439
+ use_cache: Optional[bool] = None,
440
+ output_attentions: Optional[bool] = False,
441
+ output_hidden_states: Optional[bool] = False,
442
+ return_dict: Optional[bool] = True,
443
+ **kwargs
444
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
445
+
446
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
447
+
448
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
449
+ outputs = self.model(
450
+ input_ids=input_ids,
451
+ attention_mask=attention_mask,
452
+ past_key_values=past_key_values,
453
+ inputs_embeds=inputs_embeds,
454
+ use_cache=use_cache,
455
+ output_attentions=output_attentions,
456
+ output_hidden_states=output_hidden_states,
457
+ return_dict=return_dict,
458
+ )
459
+
460
+ hidden_states = outputs[0]
461
+ logits = self.lm_head(hidden_states)
462
+
463
+ loss = None
464
+ if labels is not None:
465
+ # Shift so that tokens < n predict n
466
+ shift_logits = logits[..., :-1, :].contiguous()
467
+ shift_labels = labels[..., 1:].contiguous()
468
+ # Flatten the tokens
469
+ loss_fct = CrossEntropyLoss()
470
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
471
+ shift_labels = shift_labels.view(-1)
472
+ # Enable model parallelism
473
+ shift_labels = shift_labels.to(shift_logits.device)
474
+ loss = loss_fct(shift_logits, shift_labels)
475
+
476
+ if not return_dict:
477
+ output = (logits,) + outputs[1:]
478
+ return (loss,) + output if loss is not None else output
479
+
480
+ return CausalLMOutputWithPast(
481
+ loss=loss,
482
+ logits=logits,
483
+ past_key_values=outputs.past_key_values,
484
+ hidden_states=outputs.hidden_states,
485
+ attentions=outputs.attentions,
486
+ )
487
+
488
+ def prepare_inputs_for_generation(
489
+ self,
490
+ input_ids: torch.LongTensor,
491
+ past_key_values: Optional[torch.Tensor] = None,
492
+ attention_mask: Optional[torch.Tensor] = None,
493
+ inputs_embeds: Optional[torch.Tensor] = None,
494
+ **kwargs
495
+ ):
496
+ if past_key_values:
497
+ input_ids = input_ids[:, -1:]
498
+
499
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
500
+ if inputs_embeds is not None and past_key_values is None:
501
+ model_inputs = {"inputs_embeds": inputs_embeds}
502
+ else:
503
+ model_inputs = {"input_ids": input_ids}
504
+
505
+ model_inputs.update(
506
+ {
507
+ "past_key_values": past_key_values,
508
+ "use_cache": kwargs.get("use_cache"),
509
+ "attention_mask": attention_mask
510
+ }
511
+ )
512
+ return model_inputs
513
+
514
+ @staticmethod
515
+ def _reorder_cache(past_key_values, beam_idx):
516
+ return tuple(
517
+ tuple(past_state.index_select(0, beam_idx) for past_state in layer_past)
518
+ for layer_past in past_key_values
519
+ )
520
+
521
+ def quantize(self, bits: int):
522
+ try:
523
+ from .quantizer import QLinear
524
+ except ImportError:
525
+ raise ImportError(
526
+ f"Needs QLinear to run quantize."
527
+ )
528
+
529
+ for layer in self.model.layers:
530
+ layer.self_attn.W_pack = QLinear(
531
+ bits=bits,
532
+ weight=layer.self_attn.W_pack.weight,
533
+ bias = None,
534
+ )
535
+ layer.self_attn.o_proj = QLinear(
536
+ bits=bits,
537
+ weight=layer.self_attn.o_proj.weight,
538
+ bias = None,
539
+ )
540
+ layer.mlp.gate_proj = QLinear(
541
+ bits=bits,
542
+ weight=layer.mlp.gate_proj.weight,
543
+ bias = None,
544
+ )
545
+ layer.mlp.down_proj = QLinear(
546
+ bits=bits,
547
+ weight=layer.mlp.down_proj.weight,
548
+ bias = None,
549
+ )
550
+ layer.mlp.up_proj = QLinear(
551
+ bits=bits,
552
+ weight=layer.mlp.up_proj.weight,
553
+ bias = None,
554
+ )
555
+ return self
556
+
557
+ @torch.no_grad()
558
+ def chat(self, tokenizer, messages: List[dict], stream=False,
559
+ generation_config: Optional[GenerationConfig]=None):
560
+ generation_config = generation_config or self.generation_config
561
+ input_ids = build_chat_input(self, tokenizer, messages, generation_config.max_new_tokens)
562
+ if stream:
563
+ streamer = TextIterStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
564
+ Thread(target=self.generate, kwargs=dict(
565
+ inputs=input_ids, streamer=streamer,
566
+ generation_config=generation_config,
567
+ )).start()
568
+ return streamer
569
+ else:
570
+ outputs = self.generate(input_ids, generation_config=generation_config)
571
+ response = tokenizer.decode(outputs[0][len(input_ids[0]):], skip_special_tokens=True)
572
+ return response
pytorch_model-00001-of-00003.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99b028dee5b892a9fdb2bb1b03ee50614f32f26c00a4b82af6305c2c4f6d14da
3
+ size 9972443620
pytorch_model-00002-of-00003.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:953a36711f31ff068cd600ae1f74152806affcf32f617b5669e382531ca783b1
3
+ size 9947419824
pytorch_model-00003-of-00003.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85137388811d9ab10ac6de22832b3e5bfe9d562260bb174175ccfeb23defa23f
3
+ size 6610363169
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,290 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 26530129920
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00003-of-00003.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00003.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
10
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
11
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
12
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
13
+ "model.layers.0.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
14
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
15
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
16
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
17
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
18
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
19
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
20
+ "model.layers.1.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
21
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
22
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
23
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
24
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
25
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
26
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
27
+ "model.layers.10.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
28
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
29
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
30
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
31
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
32
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
33
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
34
+ "model.layers.11.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
35
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
36
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
37
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
38
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
39
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
40
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
41
+ "model.layers.12.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
42
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
43
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
44
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
45
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
46
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
47
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
48
+ "model.layers.13.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
49
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
50
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
51
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
52
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
53
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
54
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
55
+ "model.layers.14.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
56
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
57
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
58
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
59
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
60
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
61
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
62
+ "model.layers.15.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
63
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
64
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
65
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
66
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
67
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
68
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
69
+ "model.layers.16.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
70
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
71
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
72
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
73
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
74
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
75
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
76
+ "model.layers.17.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
77
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
78
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
79
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
80
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
81
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
82
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
83
+ "model.layers.18.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
84
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
85
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
86
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
87
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
88
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
89
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
90
+ "model.layers.19.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
91
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
92
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
93
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
94
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
95
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
96
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
97
+ "model.layers.2.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
98
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
99
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
100
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
101
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
102
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
103
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
104
+ "model.layers.20.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
105
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
106
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
107
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
108
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
109
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
110
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
111
+ "model.layers.21.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
112
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
113
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
114
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
115
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
116
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
117
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
118
+ "model.layers.22.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
119
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
120
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
121
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
122
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
123
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
124
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
125
+ "model.layers.23.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
126
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
127
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
128
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
129
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
130
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
131
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
132
+ "model.layers.24.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
133
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
134
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
135
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
136
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
137
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
138
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
139
+ "model.layers.25.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
140
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
141
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
142
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
143
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
144
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
145
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
146
+ "model.layers.26.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
147
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
148
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
149
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
150
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
151
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
152
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
153
+ "model.layers.27.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
154
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
155
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
156
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
157
+ "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
158
+ "model.layers.28.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
159
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
160
+ "model.layers.28.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
161
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
162
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
163
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
164
+ "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
165
+ "model.layers.29.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
166
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
167
+ "model.layers.29.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
168
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
169
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
170
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
171
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
172
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
173
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
174
+ "model.layers.3.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
175
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
176
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
177
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
178
+ "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
179
+ "model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
180
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
181
+ "model.layers.30.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
182
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
183
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
184
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
185
+ "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
186
+ "model.layers.31.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
187
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
188
+ "model.layers.31.self_attn.W_pack.weight": "pytorch_model-00003-of-00003.bin",
189
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
190
+ "model.layers.32.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
191
+ "model.layers.32.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
192
+ "model.layers.32.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
193
+ "model.layers.32.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
194
+ "model.layers.32.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
195
+ "model.layers.32.self_attn.W_pack.weight": "pytorch_model-00003-of-00003.bin",
196
+ "model.layers.32.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
197
+ "model.layers.33.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
198
+ "model.layers.33.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
199
+ "model.layers.33.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
200
+ "model.layers.33.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
201
+ "model.layers.33.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
202
+ "model.layers.33.self_attn.W_pack.weight": "pytorch_model-00003-of-00003.bin",
203
+ "model.layers.33.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
204
+ "model.layers.34.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
205
+ "model.layers.34.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
206
+ "model.layers.34.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
207
+ "model.layers.34.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
208
+ "model.layers.34.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
209
+ "model.layers.34.self_attn.W_pack.weight": "pytorch_model-00003-of-00003.bin",
210
+ "model.layers.34.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
211
+ "model.layers.35.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
212
+ "model.layers.35.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
213
+ "model.layers.35.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
214
+ "model.layers.35.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
215
+ "model.layers.35.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
216
+ "model.layers.35.self_attn.W_pack.weight": "pytorch_model-00003-of-00003.bin",
217
+ "model.layers.35.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
218
+ "model.layers.36.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
219
+ "model.layers.36.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
220
+ "model.layers.36.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
221
+ "model.layers.36.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
222
+ "model.layers.36.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
223
+ "model.layers.36.self_attn.W_pack.weight": "pytorch_model-00003-of-00003.bin",
224
+ "model.layers.36.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
225
+ "model.layers.37.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
226
+ "model.layers.37.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
227
+ "model.layers.37.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
228
+ "model.layers.37.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
229
+ "model.layers.37.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
230
+ "model.layers.37.self_attn.W_pack.weight": "pytorch_model-00003-of-00003.bin",
231
+ "model.layers.37.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
232
+ "model.layers.38.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
233
+ "model.layers.38.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
234
+ "model.layers.38.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
235
+ "model.layers.38.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
236
+ "model.layers.38.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
237
+ "model.layers.38.self_attn.W_pack.weight": "pytorch_model-00003-of-00003.bin",
238
+ "model.layers.38.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
239
+ "model.layers.39.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
240
+ "model.layers.39.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
241
+ "model.layers.39.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
242
+ "model.layers.39.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
243
+ "model.layers.39.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
244
+ "model.layers.39.self_attn.W_pack.weight": "pytorch_model-00003-of-00003.bin",
245
+ "model.layers.39.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
246
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
247
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
248
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
249
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
250
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
251
+ "model.layers.4.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
252
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
253
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
254
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
255
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
256
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
257
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
258
+ "model.layers.5.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
259
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
260
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
261
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
262
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
263
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
264
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
265
+ "model.layers.6.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
266
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
267
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
268
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
269
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
270
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
271
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
272
+ "model.layers.7.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
273
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
274
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
275
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
276
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
277
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
278
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
279
+ "model.layers.8.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
280
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
281
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
282
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
283
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
284
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
285
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
286
+ "model.layers.9.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
287
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
288
+ "model.norm.weight": "pytorch_model-00003-of-00003.bin"
289
+ }
290
+ }
quantizer.py ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023, Baichuan Intelligent Technology. All rights reserved.
2
+
3
+ import torch
4
+ from typing import List
5
+ import bz2
6
+ import base64
7
+ import ctypes
8
+ from transformers.utils import logging
9
+ logger = logging.get_logger(__name__)
10
+
11
+ try:
12
+ from cpm_kernels.kernels.base import LazyKernelCModule, KernelFunction, round_up
13
+
14
+ class Kernel:
15
+ def __init__(self, code: bytes, function_names: List[str]):
16
+ self.code = code
17
+ self._function_names = function_names
18
+ self._cmodule = LazyKernelCModule(self.code)
19
+
20
+ for name in self._function_names:
21
+ setattr(self, name, KernelFunction(self._cmodule, name))
22
+ quantization_code = "QlpoOTFBWSZTWX/mUzwAK6f///////////////////////////////7f////////////4C5duvi2D0Oj1ppVCJ2zQFYbnbsxmq20pAC7kEDb3Z3nWrextY9NZbavON7nveSRqszudmzAGGgkeh0Pewk881e3Tz13kW9YO7uA9AUUiAWLNW2HHWCE005Mdz3jHs1Ic7QNCQBNGgmE000DRNoGjUYmA0mEmJjIaI9JtT0JoaaMTaQ0aMjTTI1TzKMmETwyaJ6k8p4Ke1T0wk2aE0anpPSHppqNM1HqYzVGj0MpsTTUGpoCAAEyAAAmhpPSYowMk9U8mqb0mJtU8ETwCZT1DQ9R5R6htE9TTyRptQeoyHqA0B6g9T1AD1HpGQGgD1A0NPUAAAA0A1Mg00gmhKPU9E2SekHoJ5QHlNDEPUeoDEaBkAHqBoABoNABoAaGgBoAAAAAAA0AAAAAAAAEmoiIgmiD0maRip+qfpR+k9U/QKaZPUepiGeST1HqeU9TQ9JoANAMhoZPU0AAYnqaBoAANABoAAAADQGgAAADTQ0IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASJEE0AJo0GkxGJoZNKeBoTCnpNNpU9knqn+ppmUnom1PKZqTaaTTwTTFPNJ6pj1BG0eoaMgwQGkYAGk2gjT0jBqaY0RoDeqZoNEYT1NpsA/+iBrt+OVIiCKqfH7N/e67XZ2Dx9tPHyWbW4gAENNTtyzk+/WdoU604SoXU0JgfqgQxVmzbfdmaFcVxQAYINDyjTKU1FCUUzUuqqptg4SBgwIAHYE4NwQOrbY1bOF26LUVuxYr3Hp4paZXaqKU1UmXO3K+IXn2hURrgAegAaTANS+QBclUN6tpvhn85+uTPCLxzj34YO8MIMg45eRAEy9IYbKxeZTRnTy6GpPLtVGWKKK6iuDLa9wjtSmUQREX6wHfE3JeTVZdoj4Hg/3cHlBdw4c4BdGvigzZsubPr3eTi2hs6tZz3J9zUVm8qH+FPwSx4Tdr6by/OA88iLHk34rWNt7fT7NwqqqqqqqrGMYxjFcdqvY2mXyh42c2ccxhtyvBHojjUlyAKRgbvAB6nhls1wGLTOrfGMBsqRXl9Bl3sOlvafSA7sDrmAQI+mw90af+bvJ8mwjP+RKtjobGNzbfl76iTHMiIIUf9oIoygqSG2NLn0Ys/mZ+hzufu7epmzbvP1t7S0Xo8TKK7q6G5MA8vTgBb7Bf/2kITSLsH7Xmfydz7ahAt4YJbBuAQJI+1M8DLJCQH+UPbv212QWIhcCKhBrR2eryfQYIiIhKE0WtbOQ7OwM7OxtURGbF28NBndi9ejVDVA3dne37uDdzrwINS+O/0AzQTCgUjfCAwkkKFMT4Kr0aV3DicVAelGBesGYoCRcLKq5iBFR6SzOzrAwFWDFVYU2XT1oFaRJk2JBDOwVk1LFZZfwY7tQBYMGdECFA1cLZAg0IlfCTCMgZ4afRQBNvXSuMORVUTxTLSTgMFoUtaGLIr524yIM+INSFFIOHQ4TG5NZbd3Su3Nu9raSLd/ueibSYpAL0D42ZkAtD0pnXrfTxYPBw+mAt1cKPCPmDNMCDYCBiQwmANVhdDjBwsdIKyfH1slCvWbJC4QO8SBxi6A+GEpDBN6UQnPaEvBqFk3TwChKSowEENpyAueDIFs6OxxLRmFSUFpjWgYpECgDgfVBJjhg4GGcI9CD0S3igCrdziS3ZoYHlQE+7AELdvbebTVsdRvrPHCgiAbSYzUN0z0SCshLjaUaREEREQQRHNKAgAS9o0kukdJx0ulaJk0kINzlUYN0wWXLLsmRgSG1BEJNh5sCuVtIybGlKUW29BziJUTpqcA8UCCLtOGU0hH17BYTERfPKhCAwxJqSSSMd+umawlsykXZiKHesslqlVDKEHPzFhIWwJHTfcYCGE9dQK9sKixjNifLkW1iLnyZo57BBx2jksXPYjcaA6Z6rlYTl9ocZHn2URKVXnY/Wsrc5l3aym6Uq7u9eu2szSbJgwhqPqfOR1JCCZl7/AehLVBSIXc9npUk8IDzrRCS9XKMeamSDmFxK6OQDhwNnxubbnQygQb4DEL6oD5qkkG6F03dyDAUJB/awNUoDCa3CmYy2QIsK0Z46BoX1N4kY8aGNFB8WZAfWvaHeUT4gYIjEsZBBARIFAk2jCTxAmpW03GtdW4WCN0bLJiiqY3ixmHAWRqqQKqgS2hlf8mwszkhUy3LDx3GLdo5AHGAgC4BogUAVgH4QM0AGAImwbS6gwANIep0rJIU3hBgaeKAEcnzfs+g/sJZnETvInDcAH5fE7azmr8EyIFx77caxbrDBC64CEU8wCqzAHPgkk4kiPREKYHn2HaoDBWCCrFBrhR+XpeNQkdbzCBHee2hW8EW373k/qd/PxGC2R+IO4vmNEAl1AE0l4bEvmnfd5/JYs5gl9XpgQIS7g/LAK7owBwgso9j0yEB9MRIBjqmkLdG5uED3tICA6PYXe4WItRawAenfJ0lCFupoGvajxuQC/5YQPnwFpgQBMNgBndpgVNJcyw+5vCJgHtWU0EDYk2HsvD8Qkg6ANAd8UQXGH/3X3gXgNDefHyaQ/wd93Xx87hWWtW0kPCQGR+KYiPeMQse27PdNLGwhlz8WJObSnEQyHJw1JmStJXTtIg0ZKEHrLZCXd1ljLGkkxtpsDofXUiBH0LLEM43kb2waJ26KZsJ9sBbxcAqzUgWxzogNFm4vSxjMR58r5Xm8H2+6ItGcNX2AK3GhDIMzSX3YyFsbNG0u0MxvZzGFv19k2E45tXrK+1OKUYRiH2OT2Fs7kqtxMDrANVp2nxreAZg02UaFEsuf6+urQi1PxvNOhuacrStndOnonV3e5Du+Xjp8mjhiHYPNexu7UKSbt0Gs2rPIVVVSFyQ7phtQ0ZOUySoyZA79muzuLBZaLAW20gZIeuJDacErguFE3e70svo0S0mRBMBu33rjqVrNEN9A5PHvOgukEPEgb0tYAMrvcvIXB5ydzJHXQ1n+t7BUI24oJtSCTAUet75rBpXL4ylQ4LGBpbQeQCiOku+8rq90o18ga4WEGBDhvHB0YYd/CDLIMdDh2cO/i/RppcEi3Zd+CCU8OdxAAiOgi5qeghJkUnO6YGZi5LEilo2WhSiEVsU2IK7unV2rXG61Q/LbUqGx72rn2Uzx/q/fzsCWUFCQyAA+XqfGVGvL1kml0MVpjJl1A9vYoYTSatnV1+z2czsdoc4QFWLILHn1S71/r3V1S/fJMgDlXX6DVv8+FeECNi1u8zf8K8r1Khq7twFu5xPfZJT+PLpYUZWgGNDG0Jlq4rsQy86u95xqTdO0TbSGBdDOUSyyGHQAmP5mgNfVvgeY2tPzlKbyrvnaZhgQ7aWeJjzbF4mjPlro1hYjmnWUshKxVsQ6pveK850taANOgIE/aJvr0IAC0g2H2d1agVwnBkAF1kl7IPZc8mBthvlYish4AqABgI9hw2cExRabO+8Xz31+enwlCxSbnfVFlqig3UKGBQiybpEBGQLIxuoUMVYLTt53sY+lPlxSAq9f3lfnVlFmiBFrOhAeAF/0/N6HI6/+rsQ2+D5U5fenadDmtFFgeZLLESwOgWWIlgWFo+uFROhke3lKQ4bf0mLH3XSOgtDGd73hfMwDM2aF7Lonl7AlbiPbV2zY2lvu1Vj7jzlmFYoKieH93wt3fLhBXgYUGJEjga5YWEVyE00qIYWXSKd0ZaZy+vuCQlhaz5ELs9n/pjuFAHpoDCMEEtseECQF+Rk58EyW3nzCdlyCeY5WPItdkDZ4egXmjfZTLSVT29ku6KCGxHbdTBD3z52SxkuXkpoaHyy3t25+JwX5zFdYawDASl7397IB2tunNbt2FygaTBIO5qrG0asQmxEVRGCn26UX6DewTmic/QqkLZjdCTqjQDGlxy4IODucyQlmE0zkwSkR02cZjZcA1MzMczZAf1hfPnZT1IGtWIJGOcpzgYwCGyiNtoxRkupRElCCAgWJcE4igRJEQogPHYVAVBAEYDBkUEBIOSMK3KJNwQllpqWZARLCgMM8TkQoHOSZTDbSrjS6QtkYsQSloWSmQ4BlMjEJuuWh0ERMIVRLbcNDDQalLRQiEoBIUKZaiQpZQ1KoooVlNtjVVGAsG6WkNS84MJcoYIgjBrKaODOaUZG6QUZlCUGKy25MUVYGMWC+95zG4FRE0iyDRISulc0GQJt6m5u8WSQD4NAiDAMD9y0Q4TBGAaAIGe6PfdX9zl9Xginufp+HmPiAGfY8ZoDAarMoQAD9kA2OUJQV3lBq86RzpT8nbXPtqxsvN4YTDyOQgGEarV4Tc5h1yv2Npz+65PJpxO/Tefe5S5U1n8asAC3AQIACrUA5XacxgALbHvUfi9ApR956Do3PCWymCzTo7JjufU9DsGcQWqAFwwZfDzR+m6436pzvncYkARkLKOxX23RuLsQeK067Y/Fq8tB7igBMvb836/03fkV4qZ5YY4pFxADLifQb2iaUAwjesDs8Nhx5vnIw3rZOyb9+jyaYazgr2vbSKuf82URMcyf+99L2sWJHqW/I0PfaMR0KsULcnf9Lx/fJFzattuUwcjv8vdJed+FY1s49FrvJMbRVa82imzbdgSpDhEtleDphWrjgzVu59jsXKG/3f88zolkjqRQUk+Xm8F72190OzfqwfT5XAYbvq8WBzq/B+4rLP8j5PDfiytkicVOAAJ6QOe+hWqqwgfq61qtJ7jrsz89u1dDqsK/9Wur9Po5K1vHsXseRHoyF+LoewZ3uHaanw5S9LCW9Gj8k3e5ObY3NfjabO0cbzotaAPB3XIg+av5zaHst8ijMqapTpVtdwy211QZINMi1UCIHnAB3ZLFDZQuraVlNALggow5ygAhEo9EDHUCSm8+Hhev7eTufm8onZ7pATIUwBEBBUUEPBw/zcrl+pwtDJe2XApoPk8CJjTqtqbv7DYwZWFs/M8EhDcYE8AK8A+GfX/aQkYgSLdftV0Id/5gf3lOuNNC0799E3uYYtpMg6yABaJz5en+HpUfveNBXeYA8Whj8TtZK60F8V863ndv3PwKagCzpXtfv1APjaUgxkGLtptiZPR9vldS2Bfy0pT3RXWJlLCCj+GpAz28S4v0YQrYE7We9WpbVXz7KVTWEtoXM/UPZhYnpzdeokWJdNHQ6JQLxp7bOfci50rBcdOdhOqmyeC7B2rL6rxd969Xxc9L4zMrsqZ0+DoaPeSn8Y5QMLTOLpdvz1qaOO5xT1xPjgKnhTYa5pzi5U+bDcHXzYdxpgAbbhf/e8aBprxka5aM2J3lYXBG5G/r7CunzcPyjz2o79z8eDKkMvdO9WixswXLu3TkpoYcV0465fwUxoxC6L9Zwc+QsLDfqipk3wMSSRkBPM8Bxrwt0Mjr4IWW9Tw+Kw23yTbUyYJqrgNaq7saBKAdzYXMQ6mkrfqt72Lk0YwiZmIKkXUgChISCZMMrwdnjWbJDoR5ZXGxxAX5uRBfHBOk6JS8VVVWd56zxf8v3uR0/zON57e6BDuqIcQDJ7H0q5BNPaWbExYw2Bj4tRM9kB+JfynyyEfR/7ZiPXRFLmwpGGjLF9G6/J65mkUZEaKrUdBZYUxFKqGJL4LAbEfZjLi4GYXhv+x3ZpHkC3YADdMsKeYmfKgtzUd+Y7dVngbdcEFGAL3VqaYfYAYMtY3YKIQumTVXUFTFQyU0bqIeMgV2WOcZFXICpoMvueYVy0mHAiaeyNg1p5/QmSbYgyb7WQdUPfY3QeKc0hewGB2z2vH9t+pvy7B6P21pG+wXCMQHZl30TJonLPhQg8nka+raw1OLPUVWvIidrloKjcLH6/YAwepAoWEykQ9Bw2+YU/N5dbXnsNcPbubOszstYSwQYATYulLN0AHAgwb5t+VfATV6uhICgRgDGUaoVNNLc9ZMMW5+qKVhOyoRMLzJolo17ACLDPes+aoyeD5aIZm46HHKV7KqGX1IGbYEEDaAh0Vj+43wIMep+e+gsP4UEgVjmMAWTPz2XZhQDA6/Vzbk0fK+v0+bNB12LRbfmsufKzRgw7Hp7b+J+N2LqWXdwWTvhQ2rIPjc2cgS2A4Ub7IflPitJFAPyFvbvHK+tXi0Zcbi6mO6HTaIydOeYDmSYUIACAZwJCEgueoJnU7W6WfGdWtl1TdD4WHQ8AgDnmNUD+2YrjxNum3+1R9B+XSiSGrVLcFrVC/Z9R7D8DslIGyMPXbJAFthAMNYs7OdlqPilZtnwtReItC2Ff5vD8mQHwayX/vh1LB+HwoefoZ6LWUKb7WH6D0FmEhEKgwAayAYsoKUCcPepjDQYfA2TMWHoiS1lspYmEi2HdFULic/ucQlrFCCwPxyDeITAUsiAUFggCtZuDuVPLvVtM4WCG6DlrLwBL1JAaQFWuf7/uHZ1WAHEBuz9BMrshS8OhZpwrmYpgUIFoauEJQxtrw2iu9bT1ZLik/F26jhZblz7739qomvexIWc5hKq/GfFAebrnq/23mGuisbZhiROtNdFBDwqCBc2zrTYMfhMPwIF0s37CzzvYKeLjIfQZ3D2N6o+FRgDOkDGFGjCDiy9cJBVMOBWJ1AjDIxTAz/LwSRYuyzhHyDiECf0P53hWshYcMslf0PC0tWfLlUztN1xTxhwgkAudx+IE+NuS3phgEhRBo5lXEG6KhGydUzSU2WphfuFy0VkjH2AIPddbJ679s70tkL1rBEEEEmFgwK5pRCB6ZC5EX7ZCkCTI1pQUDJAwhQoosjBZFAjelFmydnwH9j46Ei5DD9ZaOvgT54UpSh4mD7FR2rjbJjFFdyOauUAjNr/DYBQJkLsUsd2mAXDIMHOuu8ULJhkx21G0UL7fnlqIPfiwdblRpcEaxVjru+6bHpdvj38qAOr1rUACbHrKGDWLFjGCBGYoGREGZBh4aGauRARRTmJdfJBWYoCDdFrBtCgYo6H8NyRIvFfbeTFjxF9riIiIiJABkRljjGMYx1mizcSoJ9AAFqKHXgBBgYnYjs06fFb2fl/bceQ8TeN4h1jrKPd/Pbtl3dl3fnbu7u7u7u7u7u7u7u7u79ZxeoA2gbgjyqd70779v47Lsepzo6y18vJkhQMaDKDNhYbWPpJA6hsD3pzguE4gtOhzrtDoDA3oMbPVBY/3fi0DbkWt7GQwMw2BtpNpeKt+v6KytGxxqCQ8JoLCGKIALFxqwIOeI7fqckjnW8eHjcW3xehEp2SWhvmrtDDdoBSOn6jSjQCgLuhd+EBOwr3q9GbUewJDA4QvH+DpFwt+JbtP30yJTy10KFMLT8MmAGUKkqn3DQHSmTACxjEheIpDhGuZT/WrsHgP+ly7Bsto8UYb2bBvwPRV1O/WaEbmIEMEbQtfphLgUDADF7nayfXs1CXBxYOi1aG36B7rr5EX31tzoym2bTIWw0maxvM3Gs+KAOSMztimS4oGQokBRf5dGKNykDp8tH9chWc9k7/6I+SxG5cZSnx52CFhoDqaZ8wBethxjRVKaRfCZTeBpi6ZNdZFjROy9x6tdgMem0rtuH6wbAz9tKvlhJ0JUP1e+2xVgroJFw8tQxLPdwVnLVMDu+mmfk9b5mK3qMNwiMyBqFaajMIgCDBYUXbdKwwVVhoMXL5YLkI5FFviIkYQTNamuapRILAqCSAYSsIOOVAtAUUrDwBSthRBgyVAM1wBrIQhhTlJKQIwFnj+b+aXuJyerhwx7HxQLofddtH71c6UuefecFIrANhfgkaIt5KL4iV43tMeP17BD8D7Dl8+AQTGQfz/rp3JWOfDodJOcvDAquYl1QQiHknUmAQ3lYpRUtJEUowXnnJnOZjZzdINlj+y7lXBb2uPR6a2E5AC3S6dBaJxYl1qyRXwQ15QflVkAK8AmAwql/n4frTztb/XRXV9J3eXRfv0MuB1OShRrtbrfdudwKxsAYC+QHiNISbAQu46ffUU/Flrw68uJ5L+7p69JjfglHs5PSd0bjADZeFsIWCqy0kQ20m3CskYLPShb0aoDdHoJBUQVEirAUgeRTtUBwAa0INXTIBPMHp9AongtXzSfuWCFQfDtzRuYRVG3WIXUjEg7b2vBZKT4ESq2tTcMyGXlqZN+uJ3CaGHEJB/3Q6/xrGIGIxyzCG5tLlSXx61sy0Bra4IFaYrjF1zJj5JPK/SslbN65uYffnqtyIX9zren+rrSsXVVhq8VZ6DFpnBVlD48AoMeltsyGSZSpdUjR6bM9J+oHRVmhpp2HBv+N4PXeS76ctP4LOLvreBzzyCr2v1K7eBo+dr2gwZ2x9k6EpHd7pNRl6Pv+IgXtj4WmtlEUQxkzWOVcT6jcLrhax5PVvgurz9q7DtdWriVdnpnTlTrQqdvWN6ZNr4OdpMM/T5Gg8irLXS/YOgvhteS49VEj8+IfNiPOf8MfMkUw+lYehdNxKZnNbjIoJiqRY1KVGIOWpRtq4m6GCyiypZKKzWBQq5j8RYJE0NCiyjJmgUmDBi8BoJgMVJYXMF4aGDL2XQ4HDKaRGaGhctNBrShK0bSU1BpFoRaTkkCCUWaDCx1MUXQCaGRhgoqhCHmzrFyZwUFG27KVdmNgbChCbZNAMghZRoXKM0CMEXaUTZswtBpLoCkxONrpa2wL0qn0mw2eV0yXs1MGgGSTcAo/GELIbpoe+8gKSqpV0ZIoIa4UCcM2EdVikuAPuDlU89YsXrb9Zb+Pr/F8NexBBbEwTQs9HmsQGBYPoK6bZKDvj9yyALrlOaMbLpKxRM+njvB4id/1Y1WPm3K2A0BVSlgWJNjYxne6JZ8mZfv7w1Nm3/GFOiwonktduZaRH2loGGhNBUlQiHENkybM8pBim0iaXcpE8dAF4GodlriMfOGH6hHY20huVvSlLDBRKHQ4Y3SyKrmCcy7ZZMDyNqVWWwpS+RHQaYnmEURGCKmQc8ARghpQffVMwK2vz6V97O+59X5foz4jUfN33Z49cKeKObXDE1rNvV2QaDOLOi+R0fl+RM8jVQ7QgNiDMzMgUCLlYO71Vn7X7vF0UcSZX1pu+s+xC4MZXNQCl0/rb68aAY3rOJ/jaw7EOYIIlln6V+oFpwZLOUjUVHfe6pdjXgAqsD219Ri16edZ03hcjePW71C29Wy0nTw5YIfs/Y9sNovb+v8vA1P7beB5bQmvEv59b+BnUs8yqQ5/cLKV0EZRMOGHmpsMrPidWDXTyP3fuO+w/9+kbujeEbdg+n4WXJQBn1kL3Py/M1JnkOu70oufaRPG6bsd6SUhq1TALBZAhKpoyMIvkQGRAzJD+udGR9e+WlVzjlJeqELl+D2smL4vG6BUFpiKHDwqftFBbX+9VV338vNg+5kL11bd1yrZaYZrGW36mrUIRi/MVgrNNITCj++zpFSOrRLE+Prlr3mYOP1TtXvtpOwLP5Kmt+3zZvXSsOXW+ix6mXS5mb1MnTvW0u8yHF356RuzXUyeGiLTe+IvXvKmJrEymIxQT9QMSU8WTHgnJi1BgP/WoqICgO21v9Hiw8IaXJY1619oEj/3cb/7R/nddLm6VA5xoN0t3XY6Hiep4VGnzs/Od0hj8f39YuAC5HvfwvWuOeV5fz820AAGglyrLFDjUrv//M/fwNdsEvj0MrTXrV8vLZfMvKMAzJ0/Sda/28/N0QniGmKhoagYUYMGp8IFDrOoi40L48r/SLxfSSDw9TM4P4vUeHE+iTmchyj7Vmwp7m7dejVSNZx+2Is5jzuf+HmHr2aml3fWein0wnXnxne72A86Cc3hrzXgbfc7lNQiJuGMljn2Y8pgXjrTczIy1teeafy8Tz8vmzBWAAFXfojX/x4Kv/YFNprgURbUBytnsI9/0WeuKmZjrWcumUGQgRDIEUsAwZkQMwPsGTJjpTEw7YAwCs7Oxn2XE+hexXn+z/L7HC65bJhCR3SxMdHngfkGgqJnhYzTGjw9StB6E4VI6SgkdNEdesLFW0cgxeYq7YABEPlMspZSBtZDQYZMvK9Cbu/UzXvja7MLlO4BfVYkMH5dwAfQ3u9WEkCoveLyp86iGmleemxREJQ0NoFyWpMxsNQCuuLGCdP703Uv1a3JeT7vfpxp8J+o/ft+J70dz7dV+1QEcxyT6REE6vsl2+0Yd8ayjKWBg2j8pRTeGhVxiYZDc6/YatrSzsw56wbWzGkp3FLpa8+60pan1LSvb+rcfyjTyEM7yC5BVyZL4r0qVCMZRc+AMHxlyZMP5QQiFATNqpVSdy8i66S7oSIl4APKPMzOTus/KeI8rrY6qBkuRSWT0y7LGvNz4KBjigkR4r0v9/bluxFmxePnvZRhpjgezOiX6bPa5LZkzsaLjmf6NzPP1ZfH9p7j4MsQL0YMETXjeb/5lAYcJWU1RECXppb+33HdO5Etl4xLXPxfV8cGZ43FFYXKVoMFQHssoAIzyiClcZR8W8vqiACqmcw8DAwzLM+FeLFaAYRiJ1DFqKh2Fcs+6Zd6erYKNpF09oZhCZNX4DO1OL94JPGTBXIPMmPjmDb0GlmwFaWG2CUqSjhc20YNd6Wwzu52BklGYvDcMnERi4Yh1wqwcOlqiLatNe4rj8FcXDxqMSsgYP5/FnSoTq2VVKttXQ3Gxq0q0Shp+qCbIAeWxu1Ynpd88H5zJfn/V+v+5/N7nyR7Q+n02bmML7aF1Sg+a32Ud2eQx2a8dQqTABf2SKJgvKADJgAJV8Rd0Wt1oIVj9nr/ZfC7fkbdqnS9R4eIbqH2HVNjOYdggfFeSAHKIkaC5R2rzEzdxs7dDCzizsiB7OluhJplyBBWKXPmS0tsUNnNs2D8zfW/QTSAr0EcsnQ/YPZBD4D0rHa3rkC2DHq+G97XfliTeY63fQow3RQpyKsCFgdUC2sF7aep4TmSDjlnDDpfIUJ3Ne7AMT4D7xpuM+j1hXBxYcyIpO3bvLubMhwY3Lrr6KfLP4PF0tpDjMOew5rBbSSUJPAfRMkDCSBum/B7S97oYaYZS56rtu79Vh408mfXcm6HcL0Qe7fRiqav0GhPcuxMpZIm/WHpICgBUirY8aK56MaW53+L/x+BbXNrjaySqntSLsoHFEiExu5hX7+yaqu7Ss2LrWVpPp9L8fuVDJdVcPqIQRFv/gWlUadkCUYMxFQf26Nlq3czS1/zwLAGILGRazcevp3q9/0O/YUWwXKvQTQghgHliLIIbcY0XxVr/9oV2++gsQ57NkRK084MjYapPJJ6Gd7WONsJRq6iIJo0GH/kO9e74wvERAiMW7UqLI+2obG59Xcazzvdk2UIhBDN4V/KqrwHJ9EpMftxjsugftMee96M9+G1DfnomWt7OmvNC5TP5/Fa50GNfJjieHFJ0mwlIothDYzg3BQyahykpudGZEmgiK9ViiKhI9ypBUuKuau8PitJWe1r0kVIrV4VRDTDa74vSvBytKDcNCzJ66Oq5G+hTTGgbpBMS6pJTOmrIjb0m9HsPvrI3rQhSkRYc1aEmn4+CFS9MpIxTpLccqtp+dpwTDqQfFDvleEeOfwGuSJEiR4QBtGkWjWrKysrJEiRI3Pd252xBk1NTBRRRZZZZZZZZZe4EJvbjqWGaaZgEypipYBc9da7d615Ozv+0TPBMoiPZt+OB7H2evtWBqyXzg9jgyNarCYQHxeABDu8KyT59xFO4fpXed3nMVTnQhwffnGz0DpW+c5RkbdjYgCQgDV6Sk3OZyVhq5u3M66CH4jQq6byDLwIv8D7ipARoPE7/rm7y2+93QALi1QT9F/QCxMDOQkHeUdC+o3NN9GXve/W1Ua/wcVgmxFD1YTuKB+xQIiSdMyXLjSbjWwNfsJH8DqADRWZHIyjHLolbAN4CAMrT3YQqcfwcVf9TtpcgPfzwWRN7XWJzrS1KzOVWXccRQ+9TusY64JEtzfyHJnKixBwcbgCBAgQiIiIiiqp3Pje3Y4/hFGgiIiqrTGMYxtsZSR3dlixYyrLVZTH79fh8yNTc4ezofRU9vjHOIATEYEQNb4IG7bzkD59jIzRNInn9c62cuu1ZkYpfHu7uokt8nd1Hc6ApKjEt2qqbEG2l6oUPERCkrFLjmUay3EPnj2vUe43MqIYdrm3PZT7WrLfnw7y9is1SEtuI3OsO3EW80l8imWVq1Yje2a7qnbRVNK7eZSUzwnE6j9CLm24oqbZ35UTokBKroRjwJNyCBEACLMRjnOy84O5zJREd0g8Xa+y0W7O3tcCI+46EvAjDUyqYnOCQAfEhYjlWVo9HFVl0Fk1g6rWywYXLyW9gmyJHKcFdans6g078Q9ryUjaXacP7/PvwauCguS3VK61FsSTIa5RZd+GJqurSiskfDyz7d0Bd7WxYHfJfTrpTamo87sRYMCEdyYaUdCzhu3027ABTtQCAnwKi9q3KK/rIpk6zEjGHEvADnOwuJ1nOvPr8XZNswFPZ07G/LauwBMG1tOWNT76s7Jw1OxxW1BImaJT6XUIQ/1VPRP6UZLBjAVwit2h7xS6TLbCUnzPvqOrOfrbFh/ZAFnP7jW/zIMkMNMUk5C20iKshen2HLTcv3ge8jBXRbUso7c88qlYXXozqDXWcHg21XXWzupu9YmNN2aY8W/tJ3ru1cs4YtK5b/YBitp4WYoOvZCpCIC0Ju2+xw3MABgLVFBetW9KA2pqTQMLlkKFfMNANN6+JBLD7W6/i0AiMi2fIgslxtlD+bdgBbDk1FxvsbR+npU23xUVtnBjvadzYRwqwnvWSPbrgxgFM01Y2yuGIJh4HBXDlmKSUokWxg39HUAD4u4+D8ivAiXNQkqnkKxTsDkVM+u/s6rx/w/VPZ1yL9nnzJm2YZ9Wl+9izPDiRnfzWU5Eo5duybQnktKu3b+J3pVuuBmmnebBXfiZtkpUjLRKvtuhD3GDAd3t8lPpMQgVQmkICwxxqhUhLQMPWxbwjlswPn5rmN8Fi0j25H0DYQMgIsU4+OvNxfxINfZR+ndisEVJrn6M1cgs+qsqW2AYv5gIBUG2nAI2sRJdPp0pkIFsJQ9DC0Exajuxg+5pGLShRHi9wPxlNGkITynkwYgPc5Bjm1ceZiqsTuXbr2ZrcqBszMKehW3A7cYHig2nqO46ef4275H+NjUxZ7Yxj0XWdJ+CBStOyj3EqZrP6f8049HRTOibY6aHBkysu7Zy/0S6gyH3v1st5NJVth4dqmwuarDr5z62e9OpPUqH6te3WRJmOs5XNggNsBgGGgo4SSlh/wYAXsqj3aHIiODcmQbAbQltCKcIoU5klptJHQ0l2P4Tgjad8WBWp9XyPm/j3QYeU5tV+GSJ4bCaYcK2PA4Spq7rr4bGK2La8fhcB+ZpbeVZdDoKcxwCBZQgvQmADvnSmoonhrOe7esVg+7JS5aUYwMCekjlC6YlQHUxfh1evKIB8OGrutYZ4YX41h6Jq6hHuvnBsJnjhYHY81i95iJiJTU6/T7VS3gB1qH0ACm35YBe58z7ceWShP5goYAvCcHOTphatcimJSi7e8cPtVNlLBeanev47WzlgmaIlrfg8PQALIwuyc+Ce7PTEdI6IMaL62wH5dzYaANEsRgmxYif+uWKupAwqrJ4eXO3BFsHrOiYQRSnB5GwA01qir3ZWamHuBtKIrzLS3by/XYFMY2AJEnhaR7ycHZFV8q2AKplu2J5dsQ24LL0qZisABXaOzHlwBFOQv0vOYWldhDsVt5f3Y4pEAsNwPQChB5QmJB9EYeqbx1Mx3plDVGMY02NMYxjG228wkHXLQBuctwIzDl0DNb2d3Zr2eV57mni8HxuT3pPieEQB9MdPlRq2ASoAJ5D34BKD2+jwhMSM3k9e3pXf6aOC4LK2IgIYJ4xQMEhhPzy+0BRQRAMTrG+uVq2FlPAAWvayCMW6HdOctiAZvYzmADuOlcPkF5QWJAaMRsb5I0Onl1kWwDFstny1tu3cPUt/f34gagGAiIG0z+LwJMwuBjAAO0oXQ+j2OhzkkDWu/H1iOt9LZS2d9xud3NjEIOUBcEGiLbYAIhuk6kG3QiZ7Vx448qOR0823ux6gaDAo/m7VGENCDY55QyihE8PY2c3FAOq0eB5VrR2rVOD8Pk54g10gYFruoShyCA600IlGADNkNWFwSUq26fo1MfJozZb8ivAWwKtUCnsIy1VVc6gilxgZXuOpIn5NqpQ4t1rnTCc+zVGQ8dLhuE4NDF7wA+sXOKNy3yzCWV69Yg3C0AUAEgSDmXcoIVu+dFgcdgdaEhA+iWl1AC/p9ikx5Lmxupjb3zEXwOwav5pXeGFu/i1uQdRtu2CBnIi7j7vIXJ+0+JkKDrtuikSysRrZuAkIPGGIXa2KOvhm+tzKtliPPcIGhgwSePz0mjUO5L7zzmcZMHoTM00cmhmTJXLHXXVL0wJj4s1MzRHFFiZHJnI5xbqYKxtqajjQWsuDBeCnFPf3bjFXVC0XXPfJZnZvcUOvlJ5TfVc9np7+YKcF8Pr101cACqIsDSQrhevDLMRutoELrdyRd4yc4EBhnWVGVUo4LsLWMYimrKjHNShUXacMGzWd1rteL0aqM9Wd9vU8jWwVgD0CDq0ypYdiu5V1wDsEFjDwLXJ6pe46MvOgOONLlAwPQwQmNUX+2AdnCCSJdjtaAefC8AY7bANwtVktFIQWVBQ95dSmjz8VnKFc5xsXgOQl3TQHPvghbPELlyOR3/IjaKbR4oXeqF4EjmEktr0SghMIXS60jhlBQIfEIJnyehMgiETwigxDpiHows1RgnEalhk2EzYwRLmRwajUmIaCFSzCXWStGaaJgaMaFOidK9crUyN2ZuYmDCMxbjQvOVrOaRTDXXVeCjhum+v9g5xzwDtdCQ0k+kA7IgR/IB4DE2B6gEv0Dv6l1YUCwQl4cgIQLDp7+vyQ0Ua6AogR/cA0tRku3sTszsBxdKvDwb0HSuapgWAtRzrmM+GLTWgg8og8IOyt6ZvFLTvQ6TdIU4jAZ9qJLorPPx8ToMIzve9bunjAzUZTwZAuejvlIVhEDGHZ43P+c2vnuH0s6xLjGN5IxE0xoW1w0CkEhDEzZIIIKKKJQkS+HFVRzrtPvD4ASgRgCszCJ7egCW+IZ1AZrFQIbETEL8gYz6s0SYtQwYi6Qsmdq1IQVCNcDQEDNHPNnw9vKmss525+DcQrAWHAQARzWHlAGPJFvL0qtVnM2mDSOxfDb56lUUmGI9SmNfCBxBRJtxwA+2eJCOmpSpXLFbYv8diZyMpTv2LEbyMNcTJr20IxsYzUrvRbyu5dvYHUZsRs8gfCLXUEVYi8a2a9PXF+ZtLPx0ZOLRblX8XTa0QJJSoa+VKRIKD5RCmFKYOIiBoFAUCXYIXCCWZKNExSIoiMUmCpS01EkRLAsoE0NCxCz8oQK0iCYNZrgS0sWA4zJgpKMgxYZxIN0k6OoboxHmMgmKyNy3rUrA2BW11g0yU50ArBdUNYm7rW6l+FmQDmsfUcr8Nxpt6ME1pzmPW2YuvyqQA1FEqGKaOFgPS4YwF0qjqJ96aNghQyxO4ETMPCpx6cPhE1xsRksh7qapVjAG7QQVa6blYCqhJolWKylASeNpfutZRkWEfehrAM1hps1M6VN9y+8pnOeOL3eSrvGKkr3kEDbExtsYADtYMAhLoFzWdZo6F3T89cLurlkYDQ8iWVgjINJHQatNc/BZZPPYhX7J3dX5zJTnZ1pJIV4y+k2MF25BTUhIvz2okmED6ax7KgYdJtMkMMjHiBpMVmJIippQbqyHkJreoQDGrZe8QH4qNpIBqEHFpVTrJVwkLCu5ds3+pbccosPAGFjP4J0AB15EXRr4rcAbXmibqr2600yb4dM8VbMHACFOCBZhZIxpWCMkDUZIBUQoKpooWCkAnBzOK5na/LqSSLTATYIaabQCteZkFlqs0bDPpuWAcNiRn6GWSnwrsatNVFIK0+WUGVX3p1UghXmamW9amFzoPHfP2Z3WLhW9ZEaq0DQiqOJyRC17MYwQA84eUDjyR/GOBNpNoO1pV6NwwsBZoAgBWz+M+YS5GC+Su1IEB0A5in0LwPQxXq7joeDPBdd3DzF6z96RTojxR29u8vE3GnO6jAa0MBmCuoxyYl/SDsbSpYIlMINttOUZndGWJ2JgBs8s7bw1GhnALOxFBnZayRRjt4bSvH+Ma9WNZSaKBoUDtDEQNIMt5XAZJIvEFZSahWUgL7ADIBAjZYJVAK8NHljSCRbLZdxbuCkFfrZVirL+GkBWYaJFCoglTaEWtiguhCVZNjj+c9eMUMbOVJQmcHOmKmRIKboAMkAbohUflNANgubKuhTXDGSlSKY0PetmdL+7bQoIJCVRY+osfasgH1NADQYBBoYd+dccoSIhapDyYkRkhkYGAZDWCMlJReDHnRJZKAxUYiJmPGYriVoGAkdW2QI785BQQakRBFiFEknMOMGpw8jj8a7sLaWrGrZ5gDnB2Ys6AFHfczh5BvVw8R6n1P4QHEbDeIf/i7kinChIP/Mpng="
23
+ kernels = Kernel(
24
+ bz2.decompress(base64.b64decode(quantization_code)),
25
+ [
26
+ "int4_to_fp16",
27
+ "fp16_to_int4",
28
+ "int8_to_fp16",
29
+ "fp16_to_int8",
30
+ "int4_to_bf16",
31
+ "bf16_to_int4",
32
+ "int8_to_bf16",
33
+ "bf16_to_int8",
34
+ ],
35
+ )
36
+ except Exception as exception:
37
+ kernels = None
38
+ logger.warning("Failed to load kernels:" + str(exception))
39
+
40
+ def quant4(weight: torch.Tensor, scale: torch.Tensor):
41
+ stream = torch.cuda.current_stream()
42
+ num_row = weight.size(0)
43
+ num_chan_fp16 = weight.size(1)
44
+ # 4bit
45
+ num_chan_int = num_chan_fp16 // 8
46
+ qweight = torch.zeros((num_row, num_chan_int), dtype=torch.int32, device=weight.device)
47
+ intweight = torch.empty(num_row, num_chan_fp16, dtype = torch.int32)
48
+ intweight = torch.clip(torch.round(weight.to(scale.dtype) / scale[:, None]),-16, 15).to(dtype=torch.int32)
49
+
50
+ for j in range(num_chan_int):
51
+ qweight[:, j] = ((intweight[:, j*8+7] & 0x0f) << 28) \
52
+ | ((intweight[:, j*8+6] & 0x0f) << 24) \
53
+ | ((intweight[:, j*8+5] & 0x0f) << 20) \
54
+ | ((intweight[:, j*8+4] & 0x0f) << 16) \
55
+ | ((intweight[:, j*8+3] & 0x0f) << 12) \
56
+ | ((intweight[:, j*8+2] & 0x0f) << 8) \
57
+ | ((intweight[:, j*8+1] & 0x0f) << 4) \
58
+ | ((intweight[:, j*8] & 0x0f))
59
+ return qweight
60
+
61
+ def dequant4(qweight: torch.Tensor, scale: torch.Tensor, input: torch.Tensor):
62
+ stream = torch.cuda.current_stream()
63
+ num_row = qweight.size(0)
64
+ num_chan_int = qweight.size(1)
65
+ # 4bit
66
+ num_chan_fp16 = num_chan_int * 8
67
+
68
+ out = torch.empty((num_row, num_chan_fp16), dtype=input.dtype, device=qweight.device)
69
+
70
+ blockDim = (128, 1, 1)
71
+ gridDim = ((num_chan_int + blockDim[0] - 1) // blockDim[0], num_row, 1)
72
+ if input.dtype == torch.bfloat16:
73
+ kernels.int4_to_bf16(
74
+ gridDim,
75
+ blockDim,
76
+ 0,
77
+ stream,
78
+ [ctypes.c_void_p(out.data_ptr()), ctypes.c_void_p(qweight.data_ptr()),
79
+ ctypes.c_void_p(scale.data_ptr()), ctypes.c_int32(num_row), ctypes.c_int32(num_chan_int), ctypes.c_int32(num_chan_fp16)],
80
+ )
81
+ elif input.dtype == torch.float16:
82
+ kernels.int4_to_fp16(
83
+ gridDim,
84
+ blockDim,
85
+ 0,
86
+ stream,
87
+ [ctypes.c_void_p(out.data_ptr()), ctypes.c_void_p(qweight.data_ptr()),
88
+ ctypes.c_void_p(scale.data_ptr()), ctypes.c_int32(num_row), ctypes.c_int32(num_chan_int), ctypes.c_int32(num_chan_fp16)],
89
+ )
90
+ return out
91
+
92
+ class QLinear(torch.nn.Module):
93
+ def __init__(self, bits: int, weight: torch.Tensor, bias=None):
94
+ super().__init__()
95
+ self.quant_bits = bits
96
+ self.scale = weight.abs().max(dim=-1).values / ((2 ** (bits - 1)) - 1)
97
+ self.scale = self.scale.to(torch.float32)
98
+ if self.quant_bits == 4:
99
+ self.weight = quant4(weight, self.scale)
100
+ elif self.quant_bits == 8:
101
+ self.weight = torch.round(weight.to(self.scale.dtype) / self.scale[:, None]).to(torch.int8)
102
+ if self.quant_bits == 8:
103
+ self.weight = self.weight.T
104
+ self.bias = None
105
+
106
+ def forward(self, input):
107
+ if self.quant_bits == 4:
108
+ assert(input.dtype == torch.bfloat16 or input.dtype == torch.float16)
109
+
110
+ if self.weight.device != input.device:
111
+ self.weight = self.weight.to(input.device)
112
+ self.scale = self.scale.to(input.device)
113
+
114
+ if self.quant_bits == 4:
115
+ self.scale = self.scale.to(input.dtype)
116
+ rweight = dequant4(self.weight, self.scale, input).T
117
+ output = torch.matmul(input, rweight)
118
+ elif self.quant_bits == 8:
119
+ rweight = self.weight.to(input.dtype) * self.scale.to(input.dtype)
120
+ output = torch.matmul(input, rweight)
121
+ if self.bias is not None:
122
+ output = output + self.bias
123
+ return output
special_tokens_map.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|inner_thoughts|>",
4
+ "<|system|>",
5
+ "<|assistant|>",
6
+ "<|prefix_begin|>",
7
+ "<|prefix_end|>",
8
+ "<eot>",
9
+ "<|prompter|>"
10
+ ],
11
+ "bos_token": {
12
+ "content": "<s>",
13
+ "lstrip": false,
14
+ "normalized": true,
15
+ "rstrip": false,
16
+ "single_word": true
17
+ },
18
+ "eos_token": "</s>",
19
+ "pad_token": "</s>",
20
+ "sep_token": "<s>",
21
+ "unk_token": {
22
+ "content": "<unk>",
23
+ "lstrip": false,
24
+ "normalized": true,
25
+ "rstrip": false,
26
+ "single_word": true
27
+ }
28
+ }
tokenization_baichuan.py ADDED
@@ -0,0 +1,232 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023, Baichuan Intelligent Technology. All rights reserved.
2
+
3
+ import os
4
+ from shutil import copyfile
5
+ from typing import Any, Dict, List, Optional, Tuple
6
+
7
+ import sentencepiece as spm
8
+ from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
9
+ from transformers.utils import logging
10
+
11
+
12
+ logger = logging.get_logger(__name__)
13
+
14
+ VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
15
+
16
+ PRETRAINED_VOCAB_FILES_MAP = {
17
+ "vocab_file": {},
18
+ "tokenizer_file": {},
19
+ }
20
+ PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {}
21
+
22
+
23
+ class BaichuanTokenizer(PreTrainedTokenizer):
24
+ """
25
+ Construct a Baichuan tokenizer. Based on byte-level Byte-Pair-Encoding.
26
+
27
+ Args:
28
+ vocab_file (`str`):
29
+ Path to the vocabulary file.
30
+ """
31
+
32
+ vocab_files_names = VOCAB_FILES_NAMES
33
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
34
+ max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
35
+ model_input_names = ["input_ids", "attention_mask"]
36
+
37
+ def __init__(
38
+ self,
39
+ vocab_file,
40
+ unk_token="<unk>",
41
+ bos_token="<s>",
42
+ eos_token="</s>",
43
+ pad_token=None,
44
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
45
+ add_bos_token=True,
46
+ add_eos_token=False,
47
+ clean_up_tokenization_spaces=False,
48
+ **kwargs,
49
+ ):
50
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
51
+ bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
52
+ eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
53
+ unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
54
+ pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
55
+ super().__init__(
56
+ bos_token=bos_token,
57
+ eos_token=eos_token,
58
+ unk_token=unk_token,
59
+ pad_token=pad_token,
60
+ add_bos_token=add_bos_token,
61
+ add_eos_token=add_eos_token,
62
+ sp_model_kwargs=self.sp_model_kwargs,
63
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
64
+ **kwargs,
65
+ )
66
+ self.vocab_file = vocab_file
67
+ self.add_bos_token = add_bos_token
68
+ self.add_eos_token = add_eos_token
69
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
70
+ self.sp_model.Load(vocab_file)
71
+
72
+ def __getstate__(self):
73
+ state = self.__dict__.copy()
74
+ state["sp_model"] = None
75
+ return state
76
+
77
+ def __setstate__(self, d):
78
+ self.__dict__ = d
79
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
80
+ self.sp_model.Load(self.vocab_file)
81
+
82
+ @property
83
+ def vocab_size(self):
84
+ """Returns vocab size"""
85
+ return self.sp_model.get_piece_size()
86
+
87
+ def get_vocab(self):
88
+ """Returns vocab as a dict"""
89
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
90
+ vocab.update(self.added_tokens_encoder)
91
+ return vocab
92
+
93
+ def _tokenize(self, text):
94
+ """Returns a tokenized string."""
95
+ return self.sp_model.encode(text, out_type=str)
96
+
97
+ def _convert_token_to_id(self, token):
98
+ """Converts a token (str) in an id using the vocab."""
99
+ return self.sp_model.piece_to_id(token)
100
+
101
+ def _convert_id_to_token(self, index):
102
+ """Converts an index (integer) in a token (str) using the vocab."""
103
+ token = self.sp_model.IdToPiece(index)
104
+ return token
105
+
106
+ def convert_tokens_to_string(self, tokens):
107
+ """Converts a sequence of tokens (string) in a single string."""
108
+ current_sub_tokens = []
109
+ out_string = ""
110
+ prev_is_special = False
111
+ for i, token in enumerate(tokens):
112
+ # make sure that special tokens are not decoded using sentencepiece model
113
+ if token in self.all_special_tokens:
114
+ if not prev_is_special and i != 0:
115
+ out_string += " "
116
+ out_string += self.sp_model.decode(current_sub_tokens) + token
117
+ prev_is_special = True
118
+ current_sub_tokens = []
119
+ else:
120
+ current_sub_tokens.append(token)
121
+ prev_is_special = False
122
+ out_string += self.sp_model.decode(current_sub_tokens)
123
+ return out_string
124
+
125
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
126
+ """
127
+ Save the vocabulary and special tokens file to a directory.
128
+
129
+ Args:
130
+ save_directory (`str`):
131
+ The directory in which to save the vocabulary.
132
+
133
+ Returns:
134
+ `Tuple(str)`: Paths to the files saved.
135
+ """
136
+ if not os.path.isdir(save_directory):
137
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
138
+ return
139
+ out_vocab_file = os.path.join(
140
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
141
+ )
142
+
143
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
144
+ copyfile(self.vocab_file, out_vocab_file)
145
+ elif not os.path.isfile(self.vocab_file):
146
+ with open(out_vocab_file, "wb") as fi:
147
+ content_spiece_model = self.sp_model.serialized_model_proto()
148
+ fi.write(content_spiece_model)
149
+
150
+ return (out_vocab_file,)
151
+
152
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
153
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
154
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
155
+
156
+ output = bos_token_id + token_ids_0 + eos_token_id
157
+
158
+ if token_ids_1 is not None:
159
+ output = output + bos_token_id + token_ids_1 + eos_token_id
160
+
161
+ return output
162
+
163
+ def get_special_tokens_mask(
164
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
165
+ ) -> List[int]:
166
+ """
167
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
168
+ special tokens using the tokenizer `prepare_for_model` method.
169
+
170
+ Args:
171
+ token_ids_0 (`List[int]`):
172
+ List of IDs.
173
+ token_ids_1 (`List[int]`, *optional*):
174
+ Optional second list of IDs for sequence pairs.
175
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
176
+ Whether or not the token list is already formatted with special tokens for the model.
177
+
178
+ Returns:
179
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
180
+ """
181
+ if already_has_special_tokens:
182
+ return super().get_special_tokens_mask(
183
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
184
+ )
185
+
186
+ bos_token_id = [1] if self.add_bos_token else []
187
+ eos_token_id = [1] if self.add_eos_token else []
188
+
189
+ if token_ids_1 is None:
190
+ return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
191
+ return (
192
+ bos_token_id
193
+ + ([0] * len(token_ids_0))
194
+ + eos_token_id
195
+ + bos_token_id
196
+ + ([0] * len(token_ids_1))
197
+ + eos_token_id
198
+ )
199
+
200
+ def create_token_type_ids_from_sequences(
201
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
202
+ ) -> List[int]:
203
+ """
204
+ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
205
+ sequence pair mask has the following format:
206
+
207
+ ```
208
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
209
+ | first sequence | second sequence |
210
+ ```
211
+
212
+ if token_ids_1 is None, only returns the first portion of the mask (0s).
213
+
214
+ Args:
215
+ token_ids_0 (`List[int]`):
216
+ List of ids.
217
+ token_ids_1 (`List[int]`, *optional*):
218
+ Optional second list of IDs for sequence pairs.
219
+
220
+ Returns:
221
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
222
+ """
223
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
224
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
225
+
226
+ output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
227
+
228
+ if token_ids_1 is not None:
229
+ output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
230
+
231
+ return output
232
+
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7d1ab69d25c74644af5c5e4dcd1cc6e96d33783dbd257b6bdea55b643c72813
3
+ size 1136765
tokenizer_config.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "auto_map": {
5
+ "AutoTokenizer": [
6
+ "tokenization_baichuan.BaichuanTokenizer",
7
+ null
8
+ ]
9
+ },
10
+ "bos_token": {
11
+ "__type": "AddedToken",
12
+ "content": "<s>",
13
+ "lstrip": false,
14
+ "normalized": true,
15
+ "rstrip": false,
16
+ "single_word": true
17
+ },
18
+ "clean_up_tokenization_spaces": false,
19
+ "eos_token": {
20
+ "__type": "AddedToken",
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": true
26
+ },
27
+ "model_max_length": 4096,
28
+ "pad_token": {
29
+ "__type": "AddedToken",
30
+ "content": "<unk>",
31
+ "lstrip": false,
32
+ "normalized": true,
33
+ "rstrip": false,
34
+ "single_word": true
35
+ },
36
+ "sp_model_kwargs": {},
37
+ "tokenizer_class": "BaichuanTokenizer",
38
+ "unk_token": {
39
+ "__type": "AddedToken",
40
+ "content": "<unk>",
41
+ "lstrip": false,
42
+ "normalized": true,
43
+ "rstrip": false,
44
+ "single_word": true
45
+ }
46
+ }
trainer_state.json ADDED
@@ -0,0 +1,3793 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9999180932099271,
5
+ "global_step": 6104,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.0,
12
+ "learning_rate": 1.8e-07,
13
+ "loss": 1.4588,
14
+ "step": 10
15
+ },
16
+ {
17
+ "epoch": 0.0,
18
+ "learning_rate": 3.8e-07,
19
+ "loss": 1.5163,
20
+ "step": 20
21
+ },
22
+ {
23
+ "epoch": 0.0,
24
+ "learning_rate": 5.800000000000001e-07,
25
+ "loss": 1.5383,
26
+ "step": 30
27
+ },
28
+ {
29
+ "epoch": 0.01,
30
+ "learning_rate": 7.8e-07,
31
+ "loss": 1.4794,
32
+ "step": 40
33
+ },
34
+ {
35
+ "epoch": 0.01,
36
+ "learning_rate": 9.800000000000001e-07,
37
+ "loss": 1.4675,
38
+ "step": 50
39
+ },
40
+ {
41
+ "epoch": 0.01,
42
+ "learning_rate": 1.1800000000000001e-06,
43
+ "loss": 1.392,
44
+ "step": 60
45
+ },
46
+ {
47
+ "epoch": 0.01,
48
+ "learning_rate": 1.3800000000000001e-06,
49
+ "loss": 1.4392,
50
+ "step": 70
51
+ },
52
+ {
53
+ "epoch": 0.01,
54
+ "learning_rate": 1.5800000000000001e-06,
55
+ "loss": 1.3785,
56
+ "step": 80
57
+ },
58
+ {
59
+ "epoch": 0.01,
60
+ "learning_rate": 1.7800000000000001e-06,
61
+ "loss": 1.3863,
62
+ "step": 90
63
+ },
64
+ {
65
+ "epoch": 0.02,
66
+ "learning_rate": 1.98e-06,
67
+ "loss": 1.4214,
68
+ "step": 100
69
+ },
70
+ {
71
+ "epoch": 0.02,
72
+ "learning_rate": 2.1800000000000003e-06,
73
+ "loss": 1.4741,
74
+ "step": 110
75
+ },
76
+ {
77
+ "epoch": 0.02,
78
+ "learning_rate": 2.38e-06,
79
+ "loss": 1.3113,
80
+ "step": 120
81
+ },
82
+ {
83
+ "epoch": 0.02,
84
+ "learning_rate": 2.5800000000000003e-06,
85
+ "loss": 1.3297,
86
+ "step": 130
87
+ },
88
+ {
89
+ "epoch": 0.02,
90
+ "learning_rate": 2.7800000000000005e-06,
91
+ "loss": 1.3179,
92
+ "step": 140
93
+ },
94
+ {
95
+ "epoch": 0.02,
96
+ "learning_rate": 2.9800000000000003e-06,
97
+ "loss": 1.3273,
98
+ "step": 150
99
+ },
100
+ {
101
+ "epoch": 0.03,
102
+ "learning_rate": 3.1800000000000005e-06,
103
+ "loss": 1.3637,
104
+ "step": 160
105
+ },
106
+ {
107
+ "epoch": 0.03,
108
+ "learning_rate": 3.3800000000000007e-06,
109
+ "loss": 1.4357,
110
+ "step": 170
111
+ },
112
+ {
113
+ "epoch": 0.03,
114
+ "learning_rate": 3.58e-06,
115
+ "loss": 1.3675,
116
+ "step": 180
117
+ },
118
+ {
119
+ "epoch": 0.03,
120
+ "learning_rate": 3.7800000000000002e-06,
121
+ "loss": 1.3398,
122
+ "step": 190
123
+ },
124
+ {
125
+ "epoch": 0.03,
126
+ "learning_rate": 3.980000000000001e-06,
127
+ "loss": 1.3694,
128
+ "step": 200
129
+ },
130
+ {
131
+ "epoch": 0.03,
132
+ "learning_rate": 4.18e-06,
133
+ "loss": 1.3456,
134
+ "step": 210
135
+ },
136
+ {
137
+ "epoch": 0.04,
138
+ "learning_rate": 4.38e-06,
139
+ "loss": 1.3203,
140
+ "step": 220
141
+ },
142
+ {
143
+ "epoch": 0.04,
144
+ "learning_rate": 4.58e-06,
145
+ "loss": 1.3678,
146
+ "step": 230
147
+ },
148
+ {
149
+ "epoch": 0.04,
150
+ "learning_rate": 4.78e-06,
151
+ "loss": 1.3973,
152
+ "step": 240
153
+ },
154
+ {
155
+ "epoch": 0.04,
156
+ "learning_rate": 4.980000000000001e-06,
157
+ "loss": 1.3017,
158
+ "step": 250
159
+ },
160
+ {
161
+ "epoch": 0.04,
162
+ "learning_rate": 5.18e-06,
163
+ "loss": 1.2614,
164
+ "step": 260
165
+ },
166
+ {
167
+ "epoch": 0.04,
168
+ "learning_rate": 5.380000000000001e-06,
169
+ "loss": 1.3756,
170
+ "step": 270
171
+ },
172
+ {
173
+ "epoch": 0.05,
174
+ "learning_rate": 5.580000000000001e-06,
175
+ "loss": 1.4691,
176
+ "step": 280
177
+ },
178
+ {
179
+ "epoch": 0.05,
180
+ "learning_rate": 5.78e-06,
181
+ "loss": 1.2958,
182
+ "step": 290
183
+ },
184
+ {
185
+ "epoch": 0.05,
186
+ "learning_rate": 5.98e-06,
187
+ "loss": 1.3148,
188
+ "step": 300
189
+ },
190
+ {
191
+ "epoch": 0.05,
192
+ "learning_rate": 6.18e-06,
193
+ "loss": 1.418,
194
+ "step": 310
195
+ },
196
+ {
197
+ "epoch": 0.05,
198
+ "learning_rate": 6.380000000000001e-06,
199
+ "loss": 1.3144,
200
+ "step": 320
201
+ },
202
+ {
203
+ "epoch": 0.05,
204
+ "learning_rate": 6.5800000000000005e-06,
205
+ "loss": 1.3724,
206
+ "step": 330
207
+ },
208
+ {
209
+ "epoch": 0.06,
210
+ "learning_rate": 6.780000000000001e-06,
211
+ "loss": 1.363,
212
+ "step": 340
213
+ },
214
+ {
215
+ "epoch": 0.06,
216
+ "learning_rate": 6.98e-06,
217
+ "loss": 1.2373,
218
+ "step": 350
219
+ },
220
+ {
221
+ "epoch": 0.06,
222
+ "learning_rate": 7.180000000000001e-06,
223
+ "loss": 1.3572,
224
+ "step": 360
225
+ },
226
+ {
227
+ "epoch": 0.06,
228
+ "learning_rate": 7.3800000000000005e-06,
229
+ "loss": 1.3494,
230
+ "step": 370
231
+ },
232
+ {
233
+ "epoch": 0.06,
234
+ "learning_rate": 7.58e-06,
235
+ "loss": 1.3055,
236
+ "step": 380
237
+ },
238
+ {
239
+ "epoch": 0.06,
240
+ "learning_rate": 7.78e-06,
241
+ "loss": 1.3626,
242
+ "step": 390
243
+ },
244
+ {
245
+ "epoch": 0.07,
246
+ "learning_rate": 7.980000000000002e-06,
247
+ "loss": 1.3851,
248
+ "step": 400
249
+ },
250
+ {
251
+ "epoch": 0.07,
252
+ "learning_rate": 8.18e-06,
253
+ "loss": 1.2608,
254
+ "step": 410
255
+ },
256
+ {
257
+ "epoch": 0.07,
258
+ "learning_rate": 8.380000000000001e-06,
259
+ "loss": 1.3282,
260
+ "step": 420
261
+ },
262
+ {
263
+ "epoch": 0.07,
264
+ "learning_rate": 8.580000000000001e-06,
265
+ "loss": 1.3424,
266
+ "step": 430
267
+ },
268
+ {
269
+ "epoch": 0.07,
270
+ "learning_rate": 8.78e-06,
271
+ "loss": 1.3204,
272
+ "step": 440
273
+ },
274
+ {
275
+ "epoch": 0.07,
276
+ "learning_rate": 8.98e-06,
277
+ "loss": 1.3753,
278
+ "step": 450
279
+ },
280
+ {
281
+ "epoch": 0.08,
282
+ "learning_rate": 9.180000000000002e-06,
283
+ "loss": 1.2741,
284
+ "step": 460
285
+ },
286
+ {
287
+ "epoch": 0.08,
288
+ "learning_rate": 9.38e-06,
289
+ "loss": 1.4024,
290
+ "step": 470
291
+ },
292
+ {
293
+ "epoch": 0.08,
294
+ "learning_rate": 9.58e-06,
295
+ "loss": 1.2724,
296
+ "step": 480
297
+ },
298
+ {
299
+ "epoch": 0.08,
300
+ "learning_rate": 9.780000000000001e-06,
301
+ "loss": 1.4165,
302
+ "step": 490
303
+ },
304
+ {
305
+ "epoch": 0.08,
306
+ "learning_rate": 9.980000000000001e-06,
307
+ "loss": 1.3768,
308
+ "step": 500
309
+ },
310
+ {
311
+ "epoch": 0.08,
312
+ "learning_rate": 1e-05,
313
+ "loss": 1.3327,
314
+ "step": 510
315
+ },
316
+ {
317
+ "epoch": 0.09,
318
+ "learning_rate": 1e-05,
319
+ "loss": 1.3627,
320
+ "step": 520
321
+ },
322
+ {
323
+ "epoch": 0.09,
324
+ "learning_rate": 1e-05,
325
+ "loss": 1.3674,
326
+ "step": 530
327
+ },
328
+ {
329
+ "epoch": 0.09,
330
+ "learning_rate": 1e-05,
331
+ "loss": 1.4293,
332
+ "step": 540
333
+ },
334
+ {
335
+ "epoch": 0.09,
336
+ "learning_rate": 1e-05,
337
+ "loss": 1.2829,
338
+ "step": 550
339
+ },
340
+ {
341
+ "epoch": 0.09,
342
+ "learning_rate": 1e-05,
343
+ "loss": 1.4258,
344
+ "step": 560
345
+ },
346
+ {
347
+ "epoch": 0.09,
348
+ "learning_rate": 1e-05,
349
+ "loss": 1.3552,
350
+ "step": 570
351
+ },
352
+ {
353
+ "epoch": 0.1,
354
+ "learning_rate": 1e-05,
355
+ "loss": 1.4267,
356
+ "step": 580
357
+ },
358
+ {
359
+ "epoch": 0.1,
360
+ "learning_rate": 1e-05,
361
+ "loss": 1.3482,
362
+ "step": 590
363
+ },
364
+ {
365
+ "epoch": 0.1,
366
+ "learning_rate": 1e-05,
367
+ "loss": 1.3768,
368
+ "step": 600
369
+ },
370
+ {
371
+ "epoch": 0.1,
372
+ "learning_rate": 1e-05,
373
+ "loss": 1.4167,
374
+ "step": 610
375
+ },
376
+ {
377
+ "epoch": 0.1,
378
+ "learning_rate": 1e-05,
379
+ "loss": 1.3562,
380
+ "step": 620
381
+ },
382
+ {
383
+ "epoch": 0.1,
384
+ "learning_rate": 1e-05,
385
+ "loss": 1.3819,
386
+ "step": 630
387
+ },
388
+ {
389
+ "epoch": 0.1,
390
+ "learning_rate": 1e-05,
391
+ "loss": 1.3362,
392
+ "step": 640
393
+ },
394
+ {
395
+ "epoch": 0.11,
396
+ "learning_rate": 1e-05,
397
+ "loss": 1.3477,
398
+ "step": 650
399
+ },
400
+ {
401
+ "epoch": 0.11,
402
+ "learning_rate": 1e-05,
403
+ "loss": 1.3238,
404
+ "step": 660
405
+ },
406
+ {
407
+ "epoch": 0.11,
408
+ "learning_rate": 1e-05,
409
+ "loss": 1.3467,
410
+ "step": 670
411
+ },
412
+ {
413
+ "epoch": 0.11,
414
+ "learning_rate": 1e-05,
415
+ "loss": 1.3679,
416
+ "step": 680
417
+ },
418
+ {
419
+ "epoch": 0.11,
420
+ "learning_rate": 1e-05,
421
+ "loss": 1.325,
422
+ "step": 690
423
+ },
424
+ {
425
+ "epoch": 0.11,
426
+ "learning_rate": 1e-05,
427
+ "loss": 1.2288,
428
+ "step": 700
429
+ },
430
+ {
431
+ "epoch": 0.12,
432
+ "learning_rate": 1e-05,
433
+ "loss": 1.2394,
434
+ "step": 710
435
+ },
436
+ {
437
+ "epoch": 0.12,
438
+ "learning_rate": 1e-05,
439
+ "loss": 1.2945,
440
+ "step": 720
441
+ },
442
+ {
443
+ "epoch": 0.12,
444
+ "learning_rate": 1e-05,
445
+ "loss": 1.2176,
446
+ "step": 730
447
+ },
448
+ {
449
+ "epoch": 0.12,
450
+ "learning_rate": 1e-05,
451
+ "loss": 1.3438,
452
+ "step": 740
453
+ },
454
+ {
455
+ "epoch": 0.12,
456
+ "learning_rate": 1e-05,
457
+ "loss": 1.3514,
458
+ "step": 750
459
+ },
460
+ {
461
+ "epoch": 0.12,
462
+ "learning_rate": 1e-05,
463
+ "loss": 1.3976,
464
+ "step": 760
465
+ },
466
+ {
467
+ "epoch": 0.13,
468
+ "learning_rate": 1e-05,
469
+ "loss": 1.3542,
470
+ "step": 770
471
+ },
472
+ {
473
+ "epoch": 0.13,
474
+ "learning_rate": 1e-05,
475
+ "loss": 1.3002,
476
+ "step": 780
477
+ },
478
+ {
479
+ "epoch": 0.13,
480
+ "learning_rate": 1e-05,
481
+ "loss": 1.2712,
482
+ "step": 790
483
+ },
484
+ {
485
+ "epoch": 0.13,
486
+ "learning_rate": 1e-05,
487
+ "loss": 1.427,
488
+ "step": 800
489
+ },
490
+ {
491
+ "epoch": 0.13,
492
+ "learning_rate": 1e-05,
493
+ "loss": 1.329,
494
+ "step": 810
495
+ },
496
+ {
497
+ "epoch": 0.13,
498
+ "learning_rate": 1e-05,
499
+ "loss": 1.3053,
500
+ "step": 820
501
+ },
502
+ {
503
+ "epoch": 0.14,
504
+ "learning_rate": 1e-05,
505
+ "loss": 1.3724,
506
+ "step": 830
507
+ },
508
+ {
509
+ "epoch": 0.14,
510
+ "learning_rate": 1e-05,
511
+ "loss": 1.2535,
512
+ "step": 840
513
+ },
514
+ {
515
+ "epoch": 0.14,
516
+ "learning_rate": 1e-05,
517
+ "loss": 1.3213,
518
+ "step": 850
519
+ },
520
+ {
521
+ "epoch": 0.14,
522
+ "learning_rate": 1e-05,
523
+ "loss": 1.23,
524
+ "step": 860
525
+ },
526
+ {
527
+ "epoch": 0.14,
528
+ "learning_rate": 1e-05,
529
+ "loss": 1.2782,
530
+ "step": 870
531
+ },
532
+ {
533
+ "epoch": 0.14,
534
+ "learning_rate": 1e-05,
535
+ "loss": 1.3225,
536
+ "step": 880
537
+ },
538
+ {
539
+ "epoch": 0.15,
540
+ "learning_rate": 1e-05,
541
+ "loss": 1.2838,
542
+ "step": 890
543
+ },
544
+ {
545
+ "epoch": 0.15,
546
+ "learning_rate": 1e-05,
547
+ "loss": 1.3434,
548
+ "step": 900
549
+ },
550
+ {
551
+ "epoch": 0.15,
552
+ "learning_rate": 1e-05,
553
+ "loss": 1.2737,
554
+ "step": 910
555
+ },
556
+ {
557
+ "epoch": 0.15,
558
+ "learning_rate": 1e-05,
559
+ "loss": 1.3334,
560
+ "step": 920
561
+ },
562
+ {
563
+ "epoch": 0.15,
564
+ "learning_rate": 1e-05,
565
+ "loss": 1.2737,
566
+ "step": 930
567
+ },
568
+ {
569
+ "epoch": 0.15,
570
+ "learning_rate": 1e-05,
571
+ "loss": 1.3841,
572
+ "step": 940
573
+ },
574
+ {
575
+ "epoch": 0.16,
576
+ "learning_rate": 1e-05,
577
+ "loss": 1.3208,
578
+ "step": 950
579
+ },
580
+ {
581
+ "epoch": 0.16,
582
+ "learning_rate": 1e-05,
583
+ "loss": 1.2985,
584
+ "step": 960
585
+ },
586
+ {
587
+ "epoch": 0.16,
588
+ "learning_rate": 1e-05,
589
+ "loss": 1.3755,
590
+ "step": 970
591
+ },
592
+ {
593
+ "epoch": 0.16,
594
+ "learning_rate": 1e-05,
595
+ "loss": 1.2616,
596
+ "step": 980
597
+ },
598
+ {
599
+ "epoch": 0.16,
600
+ "learning_rate": 1e-05,
601
+ "loss": 1.3529,
602
+ "step": 990
603
+ },
604
+ {
605
+ "epoch": 0.16,
606
+ "learning_rate": 1e-05,
607
+ "loss": 1.3163,
608
+ "step": 1000
609
+ },
610
+ {
611
+ "epoch": 0.17,
612
+ "learning_rate": 1e-05,
613
+ "loss": 1.2914,
614
+ "step": 1010
615
+ },
616
+ {
617
+ "epoch": 0.17,
618
+ "learning_rate": 1e-05,
619
+ "loss": 1.4547,
620
+ "step": 1020
621
+ },
622
+ {
623
+ "epoch": 0.17,
624
+ "learning_rate": 1e-05,
625
+ "loss": 1.2758,
626
+ "step": 1030
627
+ },
628
+ {
629
+ "epoch": 0.17,
630
+ "learning_rate": 1e-05,
631
+ "loss": 1.3591,
632
+ "step": 1040
633
+ },
634
+ {
635
+ "epoch": 0.17,
636
+ "learning_rate": 1e-05,
637
+ "loss": 1.3162,
638
+ "step": 1050
639
+ },
640
+ {
641
+ "epoch": 0.17,
642
+ "learning_rate": 1e-05,
643
+ "loss": 1.2589,
644
+ "step": 1060
645
+ },
646
+ {
647
+ "epoch": 0.18,
648
+ "learning_rate": 1e-05,
649
+ "loss": 1.3123,
650
+ "step": 1070
651
+ },
652
+ {
653
+ "epoch": 0.18,
654
+ "learning_rate": 1e-05,
655
+ "loss": 1.3089,
656
+ "step": 1080
657
+ },
658
+ {
659
+ "epoch": 0.18,
660
+ "learning_rate": 1e-05,
661
+ "loss": 1.2332,
662
+ "step": 1090
663
+ },
664
+ {
665
+ "epoch": 0.18,
666
+ "learning_rate": 1e-05,
667
+ "loss": 1.3301,
668
+ "step": 1100
669
+ },
670
+ {
671
+ "epoch": 0.18,
672
+ "learning_rate": 1e-05,
673
+ "loss": 1.3039,
674
+ "step": 1110
675
+ },
676
+ {
677
+ "epoch": 0.18,
678
+ "learning_rate": 1e-05,
679
+ "loss": 1.3132,
680
+ "step": 1120
681
+ },
682
+ {
683
+ "epoch": 0.19,
684
+ "learning_rate": 1e-05,
685
+ "loss": 1.3389,
686
+ "step": 1130
687
+ },
688
+ {
689
+ "epoch": 0.19,
690
+ "learning_rate": 1e-05,
691
+ "loss": 1.2938,
692
+ "step": 1140
693
+ },
694
+ {
695
+ "epoch": 0.19,
696
+ "learning_rate": 1e-05,
697
+ "loss": 1.2528,
698
+ "step": 1150
699
+ },
700
+ {
701
+ "epoch": 0.19,
702
+ "learning_rate": 1e-05,
703
+ "loss": 1.3062,
704
+ "step": 1160
705
+ },
706
+ {
707
+ "epoch": 0.19,
708
+ "learning_rate": 1e-05,
709
+ "loss": 1.2864,
710
+ "step": 1170
711
+ },
712
+ {
713
+ "epoch": 0.19,
714
+ "learning_rate": 1e-05,
715
+ "loss": 1.2356,
716
+ "step": 1180
717
+ },
718
+ {
719
+ "epoch": 0.19,
720
+ "learning_rate": 1e-05,
721
+ "loss": 1.2604,
722
+ "step": 1190
723
+ },
724
+ {
725
+ "epoch": 0.2,
726
+ "learning_rate": 1e-05,
727
+ "loss": 1.2845,
728
+ "step": 1200
729
+ },
730
+ {
731
+ "epoch": 0.2,
732
+ "learning_rate": 1e-05,
733
+ "loss": 1.3801,
734
+ "step": 1210
735
+ },
736
+ {
737
+ "epoch": 0.2,
738
+ "learning_rate": 1e-05,
739
+ "loss": 1.3173,
740
+ "step": 1220
741
+ },
742
+ {
743
+ "epoch": 0.2,
744
+ "learning_rate": 1e-05,
745
+ "loss": 1.272,
746
+ "step": 1230
747
+ },
748
+ {
749
+ "epoch": 0.2,
750
+ "learning_rate": 1e-05,
751
+ "loss": 1.3123,
752
+ "step": 1240
753
+ },
754
+ {
755
+ "epoch": 0.2,
756
+ "learning_rate": 1e-05,
757
+ "loss": 1.3632,
758
+ "step": 1250
759
+ },
760
+ {
761
+ "epoch": 0.21,
762
+ "learning_rate": 1e-05,
763
+ "loss": 1.3333,
764
+ "step": 1260
765
+ },
766
+ {
767
+ "epoch": 0.21,
768
+ "learning_rate": 1e-05,
769
+ "loss": 1.3122,
770
+ "step": 1270
771
+ },
772
+ {
773
+ "epoch": 0.21,
774
+ "learning_rate": 1e-05,
775
+ "loss": 1.317,
776
+ "step": 1280
777
+ },
778
+ {
779
+ "epoch": 0.21,
780
+ "learning_rate": 1e-05,
781
+ "loss": 1.2972,
782
+ "step": 1290
783
+ },
784
+ {
785
+ "epoch": 0.21,
786
+ "learning_rate": 1e-05,
787
+ "loss": 1.2496,
788
+ "step": 1300
789
+ },
790
+ {
791
+ "epoch": 0.21,
792
+ "learning_rate": 1e-05,
793
+ "loss": 1.2843,
794
+ "step": 1310
795
+ },
796
+ {
797
+ "epoch": 0.22,
798
+ "learning_rate": 1e-05,
799
+ "loss": 1.3373,
800
+ "step": 1320
801
+ },
802
+ {
803
+ "epoch": 0.22,
804
+ "learning_rate": 1e-05,
805
+ "loss": 1.2508,
806
+ "step": 1330
807
+ },
808
+ {
809
+ "epoch": 0.22,
810
+ "learning_rate": 1e-05,
811
+ "loss": 1.4132,
812
+ "step": 1340
813
+ },
814
+ {
815
+ "epoch": 0.22,
816
+ "learning_rate": 1e-05,
817
+ "loss": 1.2656,
818
+ "step": 1350
819
+ },
820
+ {
821
+ "epoch": 0.22,
822
+ "learning_rate": 1e-05,
823
+ "loss": 1.3105,
824
+ "step": 1360
825
+ },
826
+ {
827
+ "epoch": 0.22,
828
+ "learning_rate": 1e-05,
829
+ "loss": 1.3734,
830
+ "step": 1370
831
+ },
832
+ {
833
+ "epoch": 0.23,
834
+ "learning_rate": 1e-05,
835
+ "loss": 1.3538,
836
+ "step": 1380
837
+ },
838
+ {
839
+ "epoch": 0.23,
840
+ "learning_rate": 1e-05,
841
+ "loss": 1.2767,
842
+ "step": 1390
843
+ },
844
+ {
845
+ "epoch": 0.23,
846
+ "learning_rate": 1e-05,
847
+ "loss": 1.4437,
848
+ "step": 1400
849
+ },
850
+ {
851
+ "epoch": 0.23,
852
+ "learning_rate": 1e-05,
853
+ "loss": 1.2782,
854
+ "step": 1410
855
+ },
856
+ {
857
+ "epoch": 0.23,
858
+ "learning_rate": 1e-05,
859
+ "loss": 1.2588,
860
+ "step": 1420
861
+ },
862
+ {
863
+ "epoch": 0.23,
864
+ "learning_rate": 1e-05,
865
+ "loss": 1.3658,
866
+ "step": 1430
867
+ },
868
+ {
869
+ "epoch": 0.24,
870
+ "learning_rate": 1e-05,
871
+ "loss": 1.3161,
872
+ "step": 1440
873
+ },
874
+ {
875
+ "epoch": 0.24,
876
+ "learning_rate": 1e-05,
877
+ "loss": 1.3481,
878
+ "step": 1450
879
+ },
880
+ {
881
+ "epoch": 0.24,
882
+ "learning_rate": 1e-05,
883
+ "loss": 1.3329,
884
+ "step": 1460
885
+ },
886
+ {
887
+ "epoch": 0.24,
888
+ "learning_rate": 1e-05,
889
+ "loss": 1.2643,
890
+ "step": 1470
891
+ },
892
+ {
893
+ "epoch": 0.24,
894
+ "learning_rate": 1e-05,
895
+ "loss": 1.3022,
896
+ "step": 1480
897
+ },
898
+ {
899
+ "epoch": 0.24,
900
+ "learning_rate": 1e-05,
901
+ "loss": 1.2482,
902
+ "step": 1490
903
+ },
904
+ {
905
+ "epoch": 0.25,
906
+ "learning_rate": 1e-05,
907
+ "loss": 1.3112,
908
+ "step": 1500
909
+ },
910
+ {
911
+ "epoch": 0.25,
912
+ "learning_rate": 1e-05,
913
+ "loss": 1.335,
914
+ "step": 1510
915
+ },
916
+ {
917
+ "epoch": 0.25,
918
+ "learning_rate": 1e-05,
919
+ "loss": 1.2738,
920
+ "step": 1520
921
+ },
922
+ {
923
+ "epoch": 0.25,
924
+ "learning_rate": 1e-05,
925
+ "loss": 1.3219,
926
+ "step": 1530
927
+ },
928
+ {
929
+ "epoch": 0.25,
930
+ "learning_rate": 1e-05,
931
+ "loss": 1.3446,
932
+ "step": 1540
933
+ },
934
+ {
935
+ "epoch": 0.25,
936
+ "learning_rate": 1e-05,
937
+ "loss": 1.2233,
938
+ "step": 1550
939
+ },
940
+ {
941
+ "epoch": 0.26,
942
+ "learning_rate": 1e-05,
943
+ "loss": 1.2723,
944
+ "step": 1560
945
+ },
946
+ {
947
+ "epoch": 0.26,
948
+ "learning_rate": 1e-05,
949
+ "loss": 1.3748,
950
+ "step": 1570
951
+ },
952
+ {
953
+ "epoch": 0.26,
954
+ "learning_rate": 1e-05,
955
+ "loss": 1.3433,
956
+ "step": 1580
957
+ },
958
+ {
959
+ "epoch": 0.26,
960
+ "learning_rate": 1e-05,
961
+ "loss": 1.2581,
962
+ "step": 1590
963
+ },
964
+ {
965
+ "epoch": 0.26,
966
+ "learning_rate": 1e-05,
967
+ "loss": 1.2938,
968
+ "step": 1600
969
+ },
970
+ {
971
+ "epoch": 0.26,
972
+ "learning_rate": 1e-05,
973
+ "loss": 1.3463,
974
+ "step": 1610
975
+ },
976
+ {
977
+ "epoch": 0.27,
978
+ "learning_rate": 1e-05,
979
+ "loss": 1.3424,
980
+ "step": 1620
981
+ },
982
+ {
983
+ "epoch": 0.27,
984
+ "learning_rate": 1e-05,
985
+ "loss": 1.2639,
986
+ "step": 1630
987
+ },
988
+ {
989
+ "epoch": 0.27,
990
+ "learning_rate": 1e-05,
991
+ "loss": 1.3822,
992
+ "step": 1640
993
+ },
994
+ {
995
+ "epoch": 0.27,
996
+ "learning_rate": 1e-05,
997
+ "loss": 1.3105,
998
+ "step": 1650
999
+ },
1000
+ {
1001
+ "epoch": 0.27,
1002
+ "learning_rate": 1e-05,
1003
+ "loss": 1.3273,
1004
+ "step": 1660
1005
+ },
1006
+ {
1007
+ "epoch": 0.27,
1008
+ "learning_rate": 1e-05,
1009
+ "loss": 1.4105,
1010
+ "step": 1670
1011
+ },
1012
+ {
1013
+ "epoch": 0.28,
1014
+ "learning_rate": 1e-05,
1015
+ "loss": 1.3346,
1016
+ "step": 1680
1017
+ },
1018
+ {
1019
+ "epoch": 0.28,
1020
+ "learning_rate": 1e-05,
1021
+ "loss": 1.3361,
1022
+ "step": 1690
1023
+ },
1024
+ {
1025
+ "epoch": 0.28,
1026
+ "learning_rate": 1e-05,
1027
+ "loss": 1.3085,
1028
+ "step": 1700
1029
+ },
1030
+ {
1031
+ "epoch": 0.28,
1032
+ "learning_rate": 1e-05,
1033
+ "loss": 1.3822,
1034
+ "step": 1710
1035
+ },
1036
+ {
1037
+ "epoch": 0.28,
1038
+ "learning_rate": 1e-05,
1039
+ "loss": 1.2784,
1040
+ "step": 1720
1041
+ },
1042
+ {
1043
+ "epoch": 0.28,
1044
+ "learning_rate": 1e-05,
1045
+ "loss": 1.3267,
1046
+ "step": 1730
1047
+ },
1048
+ {
1049
+ "epoch": 0.29,
1050
+ "learning_rate": 1e-05,
1051
+ "loss": 1.2102,
1052
+ "step": 1740
1053
+ },
1054
+ {
1055
+ "epoch": 0.29,
1056
+ "learning_rate": 1e-05,
1057
+ "loss": 1.2318,
1058
+ "step": 1750
1059
+ },
1060
+ {
1061
+ "epoch": 0.29,
1062
+ "learning_rate": 1e-05,
1063
+ "loss": 1.2865,
1064
+ "step": 1760
1065
+ },
1066
+ {
1067
+ "epoch": 0.29,
1068
+ "learning_rate": 1e-05,
1069
+ "loss": 1.4117,
1070
+ "step": 1770
1071
+ },
1072
+ {
1073
+ "epoch": 0.29,
1074
+ "learning_rate": 1e-05,
1075
+ "loss": 1.2947,
1076
+ "step": 1780
1077
+ },
1078
+ {
1079
+ "epoch": 0.29,
1080
+ "learning_rate": 1e-05,
1081
+ "loss": 1.3536,
1082
+ "step": 1790
1083
+ },
1084
+ {
1085
+ "epoch": 0.29,
1086
+ "learning_rate": 1e-05,
1087
+ "loss": 1.3179,
1088
+ "step": 1800
1089
+ },
1090
+ {
1091
+ "epoch": 0.3,
1092
+ "learning_rate": 1e-05,
1093
+ "loss": 1.3403,
1094
+ "step": 1810
1095
+ },
1096
+ {
1097
+ "epoch": 0.3,
1098
+ "learning_rate": 1e-05,
1099
+ "loss": 1.3984,
1100
+ "step": 1820
1101
+ },
1102
+ {
1103
+ "epoch": 0.3,
1104
+ "learning_rate": 1e-05,
1105
+ "loss": 1.2817,
1106
+ "step": 1830
1107
+ },
1108
+ {
1109
+ "epoch": 0.3,
1110
+ "learning_rate": 1e-05,
1111
+ "loss": 1.3239,
1112
+ "step": 1840
1113
+ },
1114
+ {
1115
+ "epoch": 0.3,
1116
+ "learning_rate": 1e-05,
1117
+ "loss": 1.3182,
1118
+ "step": 1850
1119
+ },
1120
+ {
1121
+ "epoch": 0.3,
1122
+ "learning_rate": 1e-05,
1123
+ "loss": 1.3002,
1124
+ "step": 1860
1125
+ },
1126
+ {
1127
+ "epoch": 0.31,
1128
+ "learning_rate": 1e-05,
1129
+ "loss": 1.2652,
1130
+ "step": 1870
1131
+ },
1132
+ {
1133
+ "epoch": 0.31,
1134
+ "learning_rate": 1e-05,
1135
+ "loss": 1.2937,
1136
+ "step": 1880
1137
+ },
1138
+ {
1139
+ "epoch": 0.31,
1140
+ "learning_rate": 1e-05,
1141
+ "loss": 1.3046,
1142
+ "step": 1890
1143
+ },
1144
+ {
1145
+ "epoch": 0.31,
1146
+ "learning_rate": 1e-05,
1147
+ "loss": 1.3152,
1148
+ "step": 1900
1149
+ },
1150
+ {
1151
+ "epoch": 0.31,
1152
+ "learning_rate": 1e-05,
1153
+ "loss": 1.3017,
1154
+ "step": 1910
1155
+ },
1156
+ {
1157
+ "epoch": 0.31,
1158
+ "learning_rate": 1e-05,
1159
+ "loss": 1.2774,
1160
+ "step": 1920
1161
+ },
1162
+ {
1163
+ "epoch": 0.32,
1164
+ "learning_rate": 1e-05,
1165
+ "loss": 1.2409,
1166
+ "step": 1930
1167
+ },
1168
+ {
1169
+ "epoch": 0.32,
1170
+ "learning_rate": 1e-05,
1171
+ "loss": 1.2773,
1172
+ "step": 1940
1173
+ },
1174
+ {
1175
+ "epoch": 0.32,
1176
+ "learning_rate": 1e-05,
1177
+ "loss": 1.3688,
1178
+ "step": 1950
1179
+ },
1180
+ {
1181
+ "epoch": 0.32,
1182
+ "learning_rate": 1e-05,
1183
+ "loss": 1.3041,
1184
+ "step": 1960
1185
+ },
1186
+ {
1187
+ "epoch": 0.32,
1188
+ "learning_rate": 1e-05,
1189
+ "loss": 1.3089,
1190
+ "step": 1970
1191
+ },
1192
+ {
1193
+ "epoch": 0.32,
1194
+ "learning_rate": 1e-05,
1195
+ "loss": 1.2131,
1196
+ "step": 1980
1197
+ },
1198
+ {
1199
+ "epoch": 0.33,
1200
+ "learning_rate": 1e-05,
1201
+ "loss": 1.3107,
1202
+ "step": 1990
1203
+ },
1204
+ {
1205
+ "epoch": 0.33,
1206
+ "learning_rate": 1e-05,
1207
+ "loss": 1.2902,
1208
+ "step": 2000
1209
+ },
1210
+ {
1211
+ "epoch": 0.33,
1212
+ "learning_rate": 1e-05,
1213
+ "loss": 1.2635,
1214
+ "step": 2010
1215
+ },
1216
+ {
1217
+ "epoch": 0.33,
1218
+ "learning_rate": 1e-05,
1219
+ "loss": 1.3283,
1220
+ "step": 2020
1221
+ },
1222
+ {
1223
+ "epoch": 0.33,
1224
+ "learning_rate": 1e-05,
1225
+ "loss": 1.37,
1226
+ "step": 2030
1227
+ },
1228
+ {
1229
+ "epoch": 0.33,
1230
+ "learning_rate": 1e-05,
1231
+ "loss": 1.3471,
1232
+ "step": 2040
1233
+ },
1234
+ {
1235
+ "epoch": 0.34,
1236
+ "learning_rate": 1e-05,
1237
+ "loss": 1.2582,
1238
+ "step": 2050
1239
+ },
1240
+ {
1241
+ "epoch": 0.34,
1242
+ "learning_rate": 1e-05,
1243
+ "loss": 1.2883,
1244
+ "step": 2060
1245
+ },
1246
+ {
1247
+ "epoch": 0.34,
1248
+ "learning_rate": 1e-05,
1249
+ "loss": 1.3454,
1250
+ "step": 2070
1251
+ },
1252
+ {
1253
+ "epoch": 0.34,
1254
+ "learning_rate": 1e-05,
1255
+ "loss": 1.2927,
1256
+ "step": 2080
1257
+ },
1258
+ {
1259
+ "epoch": 0.34,
1260
+ "learning_rate": 1e-05,
1261
+ "loss": 1.337,
1262
+ "step": 2090
1263
+ },
1264
+ {
1265
+ "epoch": 0.34,
1266
+ "learning_rate": 1e-05,
1267
+ "loss": 1.2725,
1268
+ "step": 2100
1269
+ },
1270
+ {
1271
+ "epoch": 0.35,
1272
+ "learning_rate": 1e-05,
1273
+ "loss": 1.3667,
1274
+ "step": 2110
1275
+ },
1276
+ {
1277
+ "epoch": 0.35,
1278
+ "learning_rate": 1e-05,
1279
+ "loss": 1.2807,
1280
+ "step": 2120
1281
+ },
1282
+ {
1283
+ "epoch": 0.35,
1284
+ "learning_rate": 1e-05,
1285
+ "loss": 1.283,
1286
+ "step": 2130
1287
+ },
1288
+ {
1289
+ "epoch": 0.35,
1290
+ "learning_rate": 1e-05,
1291
+ "loss": 1.2922,
1292
+ "step": 2140
1293
+ },
1294
+ {
1295
+ "epoch": 0.35,
1296
+ "learning_rate": 1e-05,
1297
+ "loss": 1.2685,
1298
+ "step": 2150
1299
+ },
1300
+ {
1301
+ "epoch": 0.35,
1302
+ "learning_rate": 1e-05,
1303
+ "loss": 1.2355,
1304
+ "step": 2160
1305
+ },
1306
+ {
1307
+ "epoch": 0.36,
1308
+ "learning_rate": 1e-05,
1309
+ "loss": 1.2418,
1310
+ "step": 2170
1311
+ },
1312
+ {
1313
+ "epoch": 0.36,
1314
+ "learning_rate": 1e-05,
1315
+ "loss": 1.2759,
1316
+ "step": 2180
1317
+ },
1318
+ {
1319
+ "epoch": 0.36,
1320
+ "learning_rate": 1e-05,
1321
+ "loss": 1.2873,
1322
+ "step": 2190
1323
+ },
1324
+ {
1325
+ "epoch": 0.36,
1326
+ "learning_rate": 1e-05,
1327
+ "loss": 1.2961,
1328
+ "step": 2200
1329
+ },
1330
+ {
1331
+ "epoch": 0.36,
1332
+ "learning_rate": 1e-05,
1333
+ "loss": 1.3602,
1334
+ "step": 2210
1335
+ },
1336
+ {
1337
+ "epoch": 0.36,
1338
+ "learning_rate": 1e-05,
1339
+ "loss": 1.463,
1340
+ "step": 2220
1341
+ },
1342
+ {
1343
+ "epoch": 0.37,
1344
+ "learning_rate": 1e-05,
1345
+ "loss": 1.2493,
1346
+ "step": 2230
1347
+ },
1348
+ {
1349
+ "epoch": 0.37,
1350
+ "learning_rate": 1e-05,
1351
+ "loss": 1.2928,
1352
+ "step": 2240
1353
+ },
1354
+ {
1355
+ "epoch": 0.37,
1356
+ "learning_rate": 1e-05,
1357
+ "loss": 1.2797,
1358
+ "step": 2250
1359
+ },
1360
+ {
1361
+ "epoch": 0.37,
1362
+ "learning_rate": 1e-05,
1363
+ "loss": 1.2727,
1364
+ "step": 2260
1365
+ },
1366
+ {
1367
+ "epoch": 0.37,
1368
+ "learning_rate": 1e-05,
1369
+ "loss": 1.3153,
1370
+ "step": 2270
1371
+ },
1372
+ {
1373
+ "epoch": 0.37,
1374
+ "learning_rate": 1e-05,
1375
+ "loss": 1.3328,
1376
+ "step": 2280
1377
+ },
1378
+ {
1379
+ "epoch": 0.38,
1380
+ "learning_rate": 1e-05,
1381
+ "loss": 1.312,
1382
+ "step": 2290
1383
+ },
1384
+ {
1385
+ "epoch": 0.38,
1386
+ "learning_rate": 1e-05,
1387
+ "loss": 1.3117,
1388
+ "step": 2300
1389
+ },
1390
+ {
1391
+ "epoch": 0.38,
1392
+ "learning_rate": 1e-05,
1393
+ "loss": 1.3142,
1394
+ "step": 2310
1395
+ },
1396
+ {
1397
+ "epoch": 0.38,
1398
+ "learning_rate": 1e-05,
1399
+ "loss": 1.3553,
1400
+ "step": 2320
1401
+ },
1402
+ {
1403
+ "epoch": 0.38,
1404
+ "learning_rate": 1e-05,
1405
+ "loss": 1.3259,
1406
+ "step": 2330
1407
+ },
1408
+ {
1409
+ "epoch": 0.38,
1410
+ "learning_rate": 1e-05,
1411
+ "loss": 1.2908,
1412
+ "step": 2340
1413
+ },
1414
+ {
1415
+ "epoch": 0.38,
1416
+ "learning_rate": 1e-05,
1417
+ "loss": 1.3421,
1418
+ "step": 2350
1419
+ },
1420
+ {
1421
+ "epoch": 0.39,
1422
+ "learning_rate": 1e-05,
1423
+ "loss": 1.2947,
1424
+ "step": 2360
1425
+ },
1426
+ {
1427
+ "epoch": 0.39,
1428
+ "learning_rate": 1e-05,
1429
+ "loss": 1.2784,
1430
+ "step": 2370
1431
+ },
1432
+ {
1433
+ "epoch": 0.39,
1434
+ "learning_rate": 1e-05,
1435
+ "loss": 1.2878,
1436
+ "step": 2380
1437
+ },
1438
+ {
1439
+ "epoch": 0.39,
1440
+ "learning_rate": 1e-05,
1441
+ "loss": 1.2465,
1442
+ "step": 2390
1443
+ },
1444
+ {
1445
+ "epoch": 0.39,
1446
+ "learning_rate": 1e-05,
1447
+ "loss": 1.2567,
1448
+ "step": 2400
1449
+ },
1450
+ {
1451
+ "epoch": 0.39,
1452
+ "learning_rate": 1e-05,
1453
+ "loss": 1.3259,
1454
+ "step": 2410
1455
+ },
1456
+ {
1457
+ "epoch": 0.4,
1458
+ "learning_rate": 1e-05,
1459
+ "loss": 1.3074,
1460
+ "step": 2420
1461
+ },
1462
+ {
1463
+ "epoch": 0.4,
1464
+ "learning_rate": 1e-05,
1465
+ "loss": 1.2679,
1466
+ "step": 2430
1467
+ },
1468
+ {
1469
+ "epoch": 0.4,
1470
+ "learning_rate": 1e-05,
1471
+ "loss": 1.2891,
1472
+ "step": 2440
1473
+ },
1474
+ {
1475
+ "epoch": 0.4,
1476
+ "learning_rate": 1e-05,
1477
+ "loss": 1.2942,
1478
+ "step": 2450
1479
+ },
1480
+ {
1481
+ "epoch": 0.4,
1482
+ "learning_rate": 1e-05,
1483
+ "loss": 1.309,
1484
+ "step": 2460
1485
+ },
1486
+ {
1487
+ "epoch": 0.4,
1488
+ "learning_rate": 1e-05,
1489
+ "loss": 1.2833,
1490
+ "step": 2470
1491
+ },
1492
+ {
1493
+ "epoch": 0.41,
1494
+ "learning_rate": 1e-05,
1495
+ "loss": 1.2876,
1496
+ "step": 2480
1497
+ },
1498
+ {
1499
+ "epoch": 0.41,
1500
+ "learning_rate": 1e-05,
1501
+ "loss": 1.3055,
1502
+ "step": 2490
1503
+ },
1504
+ {
1505
+ "epoch": 0.41,
1506
+ "learning_rate": 1e-05,
1507
+ "loss": 1.2866,
1508
+ "step": 2500
1509
+ },
1510
+ {
1511
+ "epoch": 0.41,
1512
+ "learning_rate": 1e-05,
1513
+ "loss": 1.2896,
1514
+ "step": 2510
1515
+ },
1516
+ {
1517
+ "epoch": 0.41,
1518
+ "learning_rate": 1e-05,
1519
+ "loss": 1.2554,
1520
+ "step": 2520
1521
+ },
1522
+ {
1523
+ "epoch": 0.41,
1524
+ "learning_rate": 1e-05,
1525
+ "loss": 1.3605,
1526
+ "step": 2530
1527
+ },
1528
+ {
1529
+ "epoch": 0.42,
1530
+ "learning_rate": 1e-05,
1531
+ "loss": 1.2808,
1532
+ "step": 2540
1533
+ },
1534
+ {
1535
+ "epoch": 0.42,
1536
+ "learning_rate": 1e-05,
1537
+ "loss": 1.3809,
1538
+ "step": 2550
1539
+ },
1540
+ {
1541
+ "epoch": 0.42,
1542
+ "learning_rate": 1e-05,
1543
+ "loss": 1.2405,
1544
+ "step": 2560
1545
+ },
1546
+ {
1547
+ "epoch": 0.42,
1548
+ "learning_rate": 1e-05,
1549
+ "loss": 1.3486,
1550
+ "step": 2570
1551
+ },
1552
+ {
1553
+ "epoch": 0.42,
1554
+ "learning_rate": 1e-05,
1555
+ "loss": 1.2717,
1556
+ "step": 2580
1557
+ },
1558
+ {
1559
+ "epoch": 0.42,
1560
+ "learning_rate": 1e-05,
1561
+ "loss": 1.2951,
1562
+ "step": 2590
1563
+ },
1564
+ {
1565
+ "epoch": 0.43,
1566
+ "learning_rate": 1e-05,
1567
+ "loss": 1.3206,
1568
+ "step": 2600
1569
+ },
1570
+ {
1571
+ "epoch": 0.43,
1572
+ "learning_rate": 1e-05,
1573
+ "loss": 1.2649,
1574
+ "step": 2610
1575
+ },
1576
+ {
1577
+ "epoch": 0.43,
1578
+ "learning_rate": 1e-05,
1579
+ "loss": 1.3111,
1580
+ "step": 2620
1581
+ },
1582
+ {
1583
+ "epoch": 0.43,
1584
+ "learning_rate": 1e-05,
1585
+ "loss": 1.3412,
1586
+ "step": 2630
1587
+ },
1588
+ {
1589
+ "epoch": 0.43,
1590
+ "learning_rate": 1e-05,
1591
+ "loss": 1.3971,
1592
+ "step": 2640
1593
+ },
1594
+ {
1595
+ "epoch": 0.43,
1596
+ "learning_rate": 1e-05,
1597
+ "loss": 1.2913,
1598
+ "step": 2650
1599
+ },
1600
+ {
1601
+ "epoch": 0.44,
1602
+ "learning_rate": 1e-05,
1603
+ "loss": 1.3284,
1604
+ "step": 2660
1605
+ },
1606
+ {
1607
+ "epoch": 0.44,
1608
+ "learning_rate": 1e-05,
1609
+ "loss": 1.233,
1610
+ "step": 2670
1611
+ },
1612
+ {
1613
+ "epoch": 0.44,
1614
+ "learning_rate": 1e-05,
1615
+ "loss": 1.2013,
1616
+ "step": 2680
1617
+ },
1618
+ {
1619
+ "epoch": 0.44,
1620
+ "learning_rate": 1e-05,
1621
+ "loss": 1.3606,
1622
+ "step": 2690
1623
+ },
1624
+ {
1625
+ "epoch": 0.44,
1626
+ "learning_rate": 1e-05,
1627
+ "loss": 1.3042,
1628
+ "step": 2700
1629
+ },
1630
+ {
1631
+ "epoch": 0.44,
1632
+ "learning_rate": 1e-05,
1633
+ "loss": 1.3331,
1634
+ "step": 2710
1635
+ },
1636
+ {
1637
+ "epoch": 0.45,
1638
+ "learning_rate": 1e-05,
1639
+ "loss": 1.3148,
1640
+ "step": 2720
1641
+ },
1642
+ {
1643
+ "epoch": 0.45,
1644
+ "learning_rate": 1e-05,
1645
+ "loss": 1.2421,
1646
+ "step": 2730
1647
+ },
1648
+ {
1649
+ "epoch": 0.45,
1650
+ "learning_rate": 1e-05,
1651
+ "loss": 1.3807,
1652
+ "step": 2740
1653
+ },
1654
+ {
1655
+ "epoch": 0.45,
1656
+ "learning_rate": 1e-05,
1657
+ "loss": 1.3048,
1658
+ "step": 2750
1659
+ },
1660
+ {
1661
+ "epoch": 0.45,
1662
+ "learning_rate": 1e-05,
1663
+ "loss": 1.3048,
1664
+ "step": 2760
1665
+ },
1666
+ {
1667
+ "epoch": 0.45,
1668
+ "learning_rate": 1e-05,
1669
+ "loss": 1.3163,
1670
+ "step": 2770
1671
+ },
1672
+ {
1673
+ "epoch": 0.46,
1674
+ "learning_rate": 1e-05,
1675
+ "loss": 1.2634,
1676
+ "step": 2780
1677
+ },
1678
+ {
1679
+ "epoch": 0.46,
1680
+ "learning_rate": 1e-05,
1681
+ "loss": 1.36,
1682
+ "step": 2790
1683
+ },
1684
+ {
1685
+ "epoch": 0.46,
1686
+ "learning_rate": 1e-05,
1687
+ "loss": 1.2809,
1688
+ "step": 2800
1689
+ },
1690
+ {
1691
+ "epoch": 0.46,
1692
+ "learning_rate": 1e-05,
1693
+ "loss": 1.283,
1694
+ "step": 2810
1695
+ },
1696
+ {
1697
+ "epoch": 0.46,
1698
+ "learning_rate": 1e-05,
1699
+ "loss": 1.3317,
1700
+ "step": 2820
1701
+ },
1702
+ {
1703
+ "epoch": 0.46,
1704
+ "learning_rate": 1e-05,
1705
+ "loss": 1.3165,
1706
+ "step": 2830
1707
+ },
1708
+ {
1709
+ "epoch": 0.47,
1710
+ "learning_rate": 1e-05,
1711
+ "loss": 1.3155,
1712
+ "step": 2840
1713
+ },
1714
+ {
1715
+ "epoch": 0.47,
1716
+ "learning_rate": 1e-05,
1717
+ "loss": 1.1975,
1718
+ "step": 2850
1719
+ },
1720
+ {
1721
+ "epoch": 0.47,
1722
+ "learning_rate": 1e-05,
1723
+ "loss": 1.1896,
1724
+ "step": 2860
1725
+ },
1726
+ {
1727
+ "epoch": 0.47,
1728
+ "learning_rate": 1e-05,
1729
+ "loss": 1.208,
1730
+ "step": 2870
1731
+ },
1732
+ {
1733
+ "epoch": 0.47,
1734
+ "learning_rate": 1e-05,
1735
+ "loss": 1.2704,
1736
+ "step": 2880
1737
+ },
1738
+ {
1739
+ "epoch": 0.47,
1740
+ "learning_rate": 1e-05,
1741
+ "loss": 1.2951,
1742
+ "step": 2890
1743
+ },
1744
+ {
1745
+ "epoch": 0.48,
1746
+ "learning_rate": 1e-05,
1747
+ "loss": 1.1931,
1748
+ "step": 2900
1749
+ },
1750
+ {
1751
+ "epoch": 0.48,
1752
+ "learning_rate": 1e-05,
1753
+ "loss": 1.2505,
1754
+ "step": 2910
1755
+ },
1756
+ {
1757
+ "epoch": 0.48,
1758
+ "learning_rate": 1e-05,
1759
+ "loss": 1.2654,
1760
+ "step": 2920
1761
+ },
1762
+ {
1763
+ "epoch": 0.48,
1764
+ "learning_rate": 1e-05,
1765
+ "loss": 1.378,
1766
+ "step": 2930
1767
+ },
1768
+ {
1769
+ "epoch": 0.48,
1770
+ "learning_rate": 1e-05,
1771
+ "loss": 1.3106,
1772
+ "step": 2940
1773
+ },
1774
+ {
1775
+ "epoch": 0.48,
1776
+ "learning_rate": 1e-05,
1777
+ "loss": 1.2436,
1778
+ "step": 2950
1779
+ },
1780
+ {
1781
+ "epoch": 0.48,
1782
+ "learning_rate": 1e-05,
1783
+ "loss": 1.3263,
1784
+ "step": 2960
1785
+ },
1786
+ {
1787
+ "epoch": 0.49,
1788
+ "learning_rate": 1e-05,
1789
+ "loss": 1.315,
1790
+ "step": 2970
1791
+ },
1792
+ {
1793
+ "epoch": 0.49,
1794
+ "learning_rate": 1e-05,
1795
+ "loss": 1.3096,
1796
+ "step": 2980
1797
+ },
1798
+ {
1799
+ "epoch": 0.49,
1800
+ "learning_rate": 1e-05,
1801
+ "loss": 1.3328,
1802
+ "step": 2990
1803
+ },
1804
+ {
1805
+ "epoch": 0.49,
1806
+ "learning_rate": 1e-05,
1807
+ "loss": 1.273,
1808
+ "step": 3000
1809
+ },
1810
+ {
1811
+ "epoch": 0.49,
1812
+ "learning_rate": 1e-05,
1813
+ "loss": 1.2463,
1814
+ "step": 3010
1815
+ },
1816
+ {
1817
+ "epoch": 0.49,
1818
+ "learning_rate": 1e-05,
1819
+ "loss": 1.313,
1820
+ "step": 3020
1821
+ },
1822
+ {
1823
+ "epoch": 0.5,
1824
+ "learning_rate": 1e-05,
1825
+ "loss": 1.2886,
1826
+ "step": 3030
1827
+ },
1828
+ {
1829
+ "epoch": 0.5,
1830
+ "learning_rate": 1e-05,
1831
+ "loss": 1.2971,
1832
+ "step": 3040
1833
+ },
1834
+ {
1835
+ "epoch": 0.5,
1836
+ "learning_rate": 1e-05,
1837
+ "loss": 1.3871,
1838
+ "step": 3050
1839
+ },
1840
+ {
1841
+ "epoch": 0.5,
1842
+ "learning_rate": 1e-05,
1843
+ "loss": 1.2677,
1844
+ "step": 3060
1845
+ },
1846
+ {
1847
+ "epoch": 0.5,
1848
+ "learning_rate": 1e-05,
1849
+ "loss": 1.3094,
1850
+ "step": 3070
1851
+ },
1852
+ {
1853
+ "epoch": 0.5,
1854
+ "learning_rate": 1e-05,
1855
+ "loss": 1.2652,
1856
+ "step": 3080
1857
+ },
1858
+ {
1859
+ "epoch": 0.51,
1860
+ "learning_rate": 1e-05,
1861
+ "loss": 1.2308,
1862
+ "step": 3090
1863
+ },
1864
+ {
1865
+ "epoch": 0.51,
1866
+ "learning_rate": 1e-05,
1867
+ "loss": 1.3286,
1868
+ "step": 3100
1869
+ },
1870
+ {
1871
+ "epoch": 0.51,
1872
+ "learning_rate": 1e-05,
1873
+ "loss": 1.2933,
1874
+ "step": 3110
1875
+ },
1876
+ {
1877
+ "epoch": 0.51,
1878
+ "learning_rate": 1e-05,
1879
+ "loss": 1.2355,
1880
+ "step": 3120
1881
+ },
1882
+ {
1883
+ "epoch": 0.51,
1884
+ "learning_rate": 1e-05,
1885
+ "loss": 1.3138,
1886
+ "step": 3130
1887
+ },
1888
+ {
1889
+ "epoch": 0.51,
1890
+ "learning_rate": 1e-05,
1891
+ "loss": 1.2825,
1892
+ "step": 3140
1893
+ },
1894
+ {
1895
+ "epoch": 0.52,
1896
+ "learning_rate": 1e-05,
1897
+ "loss": 1.258,
1898
+ "step": 3150
1899
+ },
1900
+ {
1901
+ "epoch": 0.52,
1902
+ "learning_rate": 1e-05,
1903
+ "loss": 1.2926,
1904
+ "step": 3160
1905
+ },
1906
+ {
1907
+ "epoch": 0.52,
1908
+ "learning_rate": 1e-05,
1909
+ "loss": 1.3267,
1910
+ "step": 3170
1911
+ },
1912
+ {
1913
+ "epoch": 0.52,
1914
+ "learning_rate": 1e-05,
1915
+ "loss": 1.334,
1916
+ "step": 3180
1917
+ },
1918
+ {
1919
+ "epoch": 0.52,
1920
+ "learning_rate": 1e-05,
1921
+ "loss": 1.2268,
1922
+ "step": 3190
1923
+ },
1924
+ {
1925
+ "epoch": 0.52,
1926
+ "learning_rate": 1e-05,
1927
+ "loss": 1.3248,
1928
+ "step": 3200
1929
+ },
1930
+ {
1931
+ "epoch": 0.53,
1932
+ "learning_rate": 1e-05,
1933
+ "loss": 1.2997,
1934
+ "step": 3210
1935
+ },
1936
+ {
1937
+ "epoch": 0.53,
1938
+ "learning_rate": 1e-05,
1939
+ "loss": 1.259,
1940
+ "step": 3220
1941
+ },
1942
+ {
1943
+ "epoch": 0.53,
1944
+ "learning_rate": 1e-05,
1945
+ "loss": 1.3282,
1946
+ "step": 3230
1947
+ },
1948
+ {
1949
+ "epoch": 0.53,
1950
+ "learning_rate": 1e-05,
1951
+ "loss": 1.2567,
1952
+ "step": 3240
1953
+ },
1954
+ {
1955
+ "epoch": 0.53,
1956
+ "learning_rate": 1e-05,
1957
+ "loss": 1.3052,
1958
+ "step": 3250
1959
+ },
1960
+ {
1961
+ "epoch": 0.53,
1962
+ "learning_rate": 1e-05,
1963
+ "loss": 1.2964,
1964
+ "step": 3260
1965
+ },
1966
+ {
1967
+ "epoch": 0.54,
1968
+ "learning_rate": 1e-05,
1969
+ "loss": 1.2399,
1970
+ "step": 3270
1971
+ },
1972
+ {
1973
+ "epoch": 0.54,
1974
+ "learning_rate": 1e-05,
1975
+ "loss": 1.2876,
1976
+ "step": 3280
1977
+ },
1978
+ {
1979
+ "epoch": 0.54,
1980
+ "learning_rate": 1e-05,
1981
+ "loss": 1.2853,
1982
+ "step": 3290
1983
+ },
1984
+ {
1985
+ "epoch": 0.54,
1986
+ "learning_rate": 1e-05,
1987
+ "loss": 1.3239,
1988
+ "step": 3300
1989
+ },
1990
+ {
1991
+ "epoch": 0.54,
1992
+ "learning_rate": 1e-05,
1993
+ "loss": 1.2694,
1994
+ "step": 3310
1995
+ },
1996
+ {
1997
+ "epoch": 0.54,
1998
+ "learning_rate": 1e-05,
1999
+ "loss": 1.3172,
2000
+ "step": 3320
2001
+ },
2002
+ {
2003
+ "epoch": 0.55,
2004
+ "learning_rate": 1e-05,
2005
+ "loss": 1.2988,
2006
+ "step": 3330
2007
+ },
2008
+ {
2009
+ "epoch": 0.55,
2010
+ "learning_rate": 1e-05,
2011
+ "loss": 1.246,
2012
+ "step": 3340
2013
+ },
2014
+ {
2015
+ "epoch": 0.55,
2016
+ "learning_rate": 1e-05,
2017
+ "loss": 1.302,
2018
+ "step": 3350
2019
+ },
2020
+ {
2021
+ "epoch": 0.55,
2022
+ "learning_rate": 1e-05,
2023
+ "loss": 1.2601,
2024
+ "step": 3360
2025
+ },
2026
+ {
2027
+ "epoch": 0.55,
2028
+ "learning_rate": 1e-05,
2029
+ "loss": 1.3388,
2030
+ "step": 3370
2031
+ },
2032
+ {
2033
+ "epoch": 0.55,
2034
+ "learning_rate": 1e-05,
2035
+ "loss": 1.1941,
2036
+ "step": 3380
2037
+ },
2038
+ {
2039
+ "epoch": 0.56,
2040
+ "learning_rate": 1e-05,
2041
+ "loss": 1.1759,
2042
+ "step": 3390
2043
+ },
2044
+ {
2045
+ "epoch": 0.56,
2046
+ "learning_rate": 1e-05,
2047
+ "loss": 1.2403,
2048
+ "step": 3400
2049
+ },
2050
+ {
2051
+ "epoch": 0.56,
2052
+ "learning_rate": 1e-05,
2053
+ "loss": 1.2024,
2054
+ "step": 3410
2055
+ },
2056
+ {
2057
+ "epoch": 0.56,
2058
+ "learning_rate": 1e-05,
2059
+ "loss": 1.2752,
2060
+ "step": 3420
2061
+ },
2062
+ {
2063
+ "epoch": 0.56,
2064
+ "learning_rate": 1e-05,
2065
+ "loss": 1.2273,
2066
+ "step": 3430
2067
+ },
2068
+ {
2069
+ "epoch": 0.56,
2070
+ "learning_rate": 1e-05,
2071
+ "loss": 1.2261,
2072
+ "step": 3440
2073
+ },
2074
+ {
2075
+ "epoch": 0.57,
2076
+ "learning_rate": 1e-05,
2077
+ "loss": 1.2652,
2078
+ "step": 3450
2079
+ },
2080
+ {
2081
+ "epoch": 0.57,
2082
+ "learning_rate": 1e-05,
2083
+ "loss": 1.3601,
2084
+ "step": 3460
2085
+ },
2086
+ {
2087
+ "epoch": 0.57,
2088
+ "learning_rate": 1e-05,
2089
+ "loss": 1.3543,
2090
+ "step": 3470
2091
+ },
2092
+ {
2093
+ "epoch": 0.57,
2094
+ "learning_rate": 1e-05,
2095
+ "loss": 1.3679,
2096
+ "step": 3480
2097
+ },
2098
+ {
2099
+ "epoch": 0.57,
2100
+ "learning_rate": 1e-05,
2101
+ "loss": 1.2009,
2102
+ "step": 3490
2103
+ },
2104
+ {
2105
+ "epoch": 0.57,
2106
+ "learning_rate": 1e-05,
2107
+ "loss": 1.2414,
2108
+ "step": 3500
2109
+ },
2110
+ {
2111
+ "epoch": 0.57,
2112
+ "learning_rate": 1e-05,
2113
+ "loss": 1.1929,
2114
+ "step": 3510
2115
+ },
2116
+ {
2117
+ "epoch": 0.58,
2118
+ "learning_rate": 1e-05,
2119
+ "loss": 1.2947,
2120
+ "step": 3520
2121
+ },
2122
+ {
2123
+ "epoch": 0.58,
2124
+ "learning_rate": 1e-05,
2125
+ "loss": 1.2843,
2126
+ "step": 3530
2127
+ },
2128
+ {
2129
+ "epoch": 0.58,
2130
+ "learning_rate": 1e-05,
2131
+ "loss": 1.2223,
2132
+ "step": 3540
2133
+ },
2134
+ {
2135
+ "epoch": 0.58,
2136
+ "learning_rate": 1e-05,
2137
+ "loss": 1.2569,
2138
+ "step": 3550
2139
+ },
2140
+ {
2141
+ "epoch": 0.58,
2142
+ "learning_rate": 1e-05,
2143
+ "loss": 1.1927,
2144
+ "step": 3560
2145
+ },
2146
+ {
2147
+ "epoch": 0.58,
2148
+ "learning_rate": 1e-05,
2149
+ "loss": 1.3239,
2150
+ "step": 3570
2151
+ },
2152
+ {
2153
+ "epoch": 0.59,
2154
+ "learning_rate": 1e-05,
2155
+ "loss": 1.3273,
2156
+ "step": 3580
2157
+ },
2158
+ {
2159
+ "epoch": 0.59,
2160
+ "learning_rate": 1e-05,
2161
+ "loss": 1.2522,
2162
+ "step": 3590
2163
+ },
2164
+ {
2165
+ "epoch": 0.59,
2166
+ "learning_rate": 1e-05,
2167
+ "loss": 1.3084,
2168
+ "step": 3600
2169
+ },
2170
+ {
2171
+ "epoch": 0.59,
2172
+ "learning_rate": 1e-05,
2173
+ "loss": 1.2368,
2174
+ "step": 3610
2175
+ },
2176
+ {
2177
+ "epoch": 0.59,
2178
+ "learning_rate": 1e-05,
2179
+ "loss": 1.2644,
2180
+ "step": 3620
2181
+ },
2182
+ {
2183
+ "epoch": 0.59,
2184
+ "learning_rate": 1e-05,
2185
+ "loss": 1.2636,
2186
+ "step": 3630
2187
+ },
2188
+ {
2189
+ "epoch": 0.6,
2190
+ "learning_rate": 1e-05,
2191
+ "loss": 1.2676,
2192
+ "step": 3640
2193
+ },
2194
+ {
2195
+ "epoch": 0.6,
2196
+ "learning_rate": 1e-05,
2197
+ "loss": 1.2844,
2198
+ "step": 3650
2199
+ },
2200
+ {
2201
+ "epoch": 0.6,
2202
+ "learning_rate": 1e-05,
2203
+ "loss": 1.3151,
2204
+ "step": 3660
2205
+ },
2206
+ {
2207
+ "epoch": 0.6,
2208
+ "learning_rate": 1e-05,
2209
+ "loss": 1.2261,
2210
+ "step": 3670
2211
+ },
2212
+ {
2213
+ "epoch": 0.6,
2214
+ "learning_rate": 1e-05,
2215
+ "loss": 1.2124,
2216
+ "step": 3680
2217
+ },
2218
+ {
2219
+ "epoch": 0.6,
2220
+ "learning_rate": 1e-05,
2221
+ "loss": 1.2555,
2222
+ "step": 3690
2223
+ },
2224
+ {
2225
+ "epoch": 0.61,
2226
+ "learning_rate": 1e-05,
2227
+ "loss": 1.2169,
2228
+ "step": 3700
2229
+ },
2230
+ {
2231
+ "epoch": 0.61,
2232
+ "learning_rate": 1e-05,
2233
+ "loss": 1.3497,
2234
+ "step": 3710
2235
+ },
2236
+ {
2237
+ "epoch": 0.61,
2238
+ "learning_rate": 1e-05,
2239
+ "loss": 1.2615,
2240
+ "step": 3720
2241
+ },
2242
+ {
2243
+ "epoch": 0.61,
2244
+ "learning_rate": 1e-05,
2245
+ "loss": 1.28,
2246
+ "step": 3730
2247
+ },
2248
+ {
2249
+ "epoch": 0.61,
2250
+ "learning_rate": 1e-05,
2251
+ "loss": 1.2943,
2252
+ "step": 3740
2253
+ },
2254
+ {
2255
+ "epoch": 0.61,
2256
+ "learning_rate": 1e-05,
2257
+ "loss": 1.2596,
2258
+ "step": 3750
2259
+ },
2260
+ {
2261
+ "epoch": 0.62,
2262
+ "learning_rate": 1e-05,
2263
+ "loss": 1.2416,
2264
+ "step": 3760
2265
+ },
2266
+ {
2267
+ "epoch": 0.62,
2268
+ "learning_rate": 1e-05,
2269
+ "loss": 1.2909,
2270
+ "step": 3770
2271
+ },
2272
+ {
2273
+ "epoch": 0.62,
2274
+ "learning_rate": 1e-05,
2275
+ "loss": 1.2281,
2276
+ "step": 3780
2277
+ },
2278
+ {
2279
+ "epoch": 0.62,
2280
+ "learning_rate": 1e-05,
2281
+ "loss": 1.2071,
2282
+ "step": 3790
2283
+ },
2284
+ {
2285
+ "epoch": 0.62,
2286
+ "learning_rate": 1e-05,
2287
+ "loss": 1.279,
2288
+ "step": 3800
2289
+ },
2290
+ {
2291
+ "epoch": 0.62,
2292
+ "learning_rate": 1e-05,
2293
+ "loss": 1.2921,
2294
+ "step": 3810
2295
+ },
2296
+ {
2297
+ "epoch": 0.63,
2298
+ "learning_rate": 1e-05,
2299
+ "loss": 1.2398,
2300
+ "step": 3820
2301
+ },
2302
+ {
2303
+ "epoch": 0.63,
2304
+ "learning_rate": 1e-05,
2305
+ "loss": 1.2424,
2306
+ "step": 3830
2307
+ },
2308
+ {
2309
+ "epoch": 0.63,
2310
+ "learning_rate": 1e-05,
2311
+ "loss": 1.2615,
2312
+ "step": 3840
2313
+ },
2314
+ {
2315
+ "epoch": 0.63,
2316
+ "learning_rate": 1e-05,
2317
+ "loss": 1.3171,
2318
+ "step": 3850
2319
+ },
2320
+ {
2321
+ "epoch": 0.63,
2322
+ "learning_rate": 1e-05,
2323
+ "loss": 1.3122,
2324
+ "step": 3860
2325
+ },
2326
+ {
2327
+ "epoch": 0.63,
2328
+ "learning_rate": 1e-05,
2329
+ "loss": 1.2333,
2330
+ "step": 3870
2331
+ },
2332
+ {
2333
+ "epoch": 0.64,
2334
+ "learning_rate": 1e-05,
2335
+ "loss": 1.3382,
2336
+ "step": 3880
2337
+ },
2338
+ {
2339
+ "epoch": 0.64,
2340
+ "learning_rate": 1e-05,
2341
+ "loss": 1.2945,
2342
+ "step": 3890
2343
+ },
2344
+ {
2345
+ "epoch": 0.64,
2346
+ "learning_rate": 1e-05,
2347
+ "loss": 1.2718,
2348
+ "step": 3900
2349
+ },
2350
+ {
2351
+ "epoch": 0.64,
2352
+ "learning_rate": 1e-05,
2353
+ "loss": 1.3351,
2354
+ "step": 3910
2355
+ },
2356
+ {
2357
+ "epoch": 0.64,
2358
+ "learning_rate": 1e-05,
2359
+ "loss": 1.2759,
2360
+ "step": 3920
2361
+ },
2362
+ {
2363
+ "epoch": 0.64,
2364
+ "learning_rate": 1e-05,
2365
+ "loss": 1.3349,
2366
+ "step": 3930
2367
+ },
2368
+ {
2369
+ "epoch": 0.65,
2370
+ "learning_rate": 1e-05,
2371
+ "loss": 1.2619,
2372
+ "step": 3940
2373
+ },
2374
+ {
2375
+ "epoch": 0.65,
2376
+ "learning_rate": 1e-05,
2377
+ "loss": 1.2832,
2378
+ "step": 3950
2379
+ },
2380
+ {
2381
+ "epoch": 0.65,
2382
+ "learning_rate": 1e-05,
2383
+ "loss": 1.2646,
2384
+ "step": 3960
2385
+ },
2386
+ {
2387
+ "epoch": 0.65,
2388
+ "learning_rate": 1e-05,
2389
+ "loss": 1.3354,
2390
+ "step": 3970
2391
+ },
2392
+ {
2393
+ "epoch": 0.65,
2394
+ "learning_rate": 1e-05,
2395
+ "loss": 1.3257,
2396
+ "step": 3980
2397
+ },
2398
+ {
2399
+ "epoch": 0.65,
2400
+ "learning_rate": 1e-05,
2401
+ "loss": 1.2637,
2402
+ "step": 3990
2403
+ },
2404
+ {
2405
+ "epoch": 0.66,
2406
+ "learning_rate": 1e-05,
2407
+ "loss": 1.3233,
2408
+ "step": 4000
2409
+ },
2410
+ {
2411
+ "epoch": 0.66,
2412
+ "learning_rate": 1e-05,
2413
+ "loss": 1.2305,
2414
+ "step": 4010
2415
+ },
2416
+ {
2417
+ "epoch": 0.66,
2418
+ "learning_rate": 1e-05,
2419
+ "loss": 1.3121,
2420
+ "step": 4020
2421
+ },
2422
+ {
2423
+ "epoch": 0.66,
2424
+ "learning_rate": 1e-05,
2425
+ "loss": 1.2502,
2426
+ "step": 4030
2427
+ },
2428
+ {
2429
+ "epoch": 0.66,
2430
+ "learning_rate": 1e-05,
2431
+ "loss": 1.3405,
2432
+ "step": 4040
2433
+ },
2434
+ {
2435
+ "epoch": 0.66,
2436
+ "learning_rate": 1e-05,
2437
+ "loss": 1.265,
2438
+ "step": 4050
2439
+ },
2440
+ {
2441
+ "epoch": 0.67,
2442
+ "learning_rate": 1e-05,
2443
+ "loss": 1.3124,
2444
+ "step": 4060
2445
+ },
2446
+ {
2447
+ "epoch": 0.67,
2448
+ "learning_rate": 1e-05,
2449
+ "loss": 1.2664,
2450
+ "step": 4070
2451
+ },
2452
+ {
2453
+ "epoch": 0.67,
2454
+ "learning_rate": 1e-05,
2455
+ "loss": 1.3427,
2456
+ "step": 4080
2457
+ },
2458
+ {
2459
+ "epoch": 0.67,
2460
+ "learning_rate": 1e-05,
2461
+ "loss": 1.2858,
2462
+ "step": 4090
2463
+ },
2464
+ {
2465
+ "epoch": 0.67,
2466
+ "learning_rate": 1e-05,
2467
+ "loss": 1.2414,
2468
+ "step": 4100
2469
+ },
2470
+ {
2471
+ "epoch": 0.67,
2472
+ "learning_rate": 1e-05,
2473
+ "loss": 1.1726,
2474
+ "step": 4110
2475
+ },
2476
+ {
2477
+ "epoch": 0.67,
2478
+ "learning_rate": 1e-05,
2479
+ "loss": 1.2786,
2480
+ "step": 4120
2481
+ },
2482
+ {
2483
+ "epoch": 0.68,
2484
+ "learning_rate": 1e-05,
2485
+ "loss": 1.2386,
2486
+ "step": 4130
2487
+ },
2488
+ {
2489
+ "epoch": 0.68,
2490
+ "learning_rate": 1e-05,
2491
+ "loss": 1.2194,
2492
+ "step": 4140
2493
+ },
2494
+ {
2495
+ "epoch": 0.68,
2496
+ "learning_rate": 1e-05,
2497
+ "loss": 1.3317,
2498
+ "step": 4150
2499
+ },
2500
+ {
2501
+ "epoch": 0.68,
2502
+ "learning_rate": 1e-05,
2503
+ "loss": 1.3069,
2504
+ "step": 4160
2505
+ },
2506
+ {
2507
+ "epoch": 0.68,
2508
+ "learning_rate": 1e-05,
2509
+ "loss": 1.182,
2510
+ "step": 4170
2511
+ },
2512
+ {
2513
+ "epoch": 0.68,
2514
+ "learning_rate": 1e-05,
2515
+ "loss": 1.2819,
2516
+ "step": 4180
2517
+ },
2518
+ {
2519
+ "epoch": 0.69,
2520
+ "learning_rate": 1e-05,
2521
+ "loss": 1.2253,
2522
+ "step": 4190
2523
+ },
2524
+ {
2525
+ "epoch": 0.69,
2526
+ "learning_rate": 1e-05,
2527
+ "loss": 1.2657,
2528
+ "step": 4200
2529
+ },
2530
+ {
2531
+ "epoch": 0.69,
2532
+ "learning_rate": 1e-05,
2533
+ "loss": 1.2418,
2534
+ "step": 4210
2535
+ },
2536
+ {
2537
+ "epoch": 0.69,
2538
+ "learning_rate": 1e-05,
2539
+ "loss": 1.2285,
2540
+ "step": 4220
2541
+ },
2542
+ {
2543
+ "epoch": 0.69,
2544
+ "learning_rate": 1e-05,
2545
+ "loss": 1.3214,
2546
+ "step": 4230
2547
+ },
2548
+ {
2549
+ "epoch": 0.69,
2550
+ "learning_rate": 1e-05,
2551
+ "loss": 1.2696,
2552
+ "step": 4240
2553
+ },
2554
+ {
2555
+ "epoch": 0.7,
2556
+ "learning_rate": 1e-05,
2557
+ "loss": 1.3138,
2558
+ "step": 4250
2559
+ },
2560
+ {
2561
+ "epoch": 0.7,
2562
+ "learning_rate": 1e-05,
2563
+ "loss": 1.2085,
2564
+ "step": 4260
2565
+ },
2566
+ {
2567
+ "epoch": 0.7,
2568
+ "learning_rate": 1e-05,
2569
+ "loss": 1.2584,
2570
+ "step": 4270
2571
+ },
2572
+ {
2573
+ "epoch": 0.7,
2574
+ "learning_rate": 1e-05,
2575
+ "loss": 1.2333,
2576
+ "step": 4280
2577
+ },
2578
+ {
2579
+ "epoch": 0.7,
2580
+ "learning_rate": 1e-05,
2581
+ "loss": 1.3303,
2582
+ "step": 4290
2583
+ },
2584
+ {
2585
+ "epoch": 0.7,
2586
+ "learning_rate": 1e-05,
2587
+ "loss": 1.2612,
2588
+ "step": 4300
2589
+ },
2590
+ {
2591
+ "epoch": 0.71,
2592
+ "learning_rate": 1e-05,
2593
+ "loss": 1.1736,
2594
+ "step": 4310
2595
+ },
2596
+ {
2597
+ "epoch": 0.71,
2598
+ "learning_rate": 1e-05,
2599
+ "loss": 1.2627,
2600
+ "step": 4320
2601
+ },
2602
+ {
2603
+ "epoch": 0.71,
2604
+ "learning_rate": 1e-05,
2605
+ "loss": 1.3033,
2606
+ "step": 4330
2607
+ },
2608
+ {
2609
+ "epoch": 0.71,
2610
+ "learning_rate": 1e-05,
2611
+ "loss": 1.2415,
2612
+ "step": 4340
2613
+ },
2614
+ {
2615
+ "epoch": 0.71,
2616
+ "learning_rate": 1e-05,
2617
+ "loss": 1.2739,
2618
+ "step": 4350
2619
+ },
2620
+ {
2621
+ "epoch": 0.71,
2622
+ "learning_rate": 1e-05,
2623
+ "loss": 1.2591,
2624
+ "step": 4360
2625
+ },
2626
+ {
2627
+ "epoch": 0.72,
2628
+ "learning_rate": 1e-05,
2629
+ "loss": 1.2699,
2630
+ "step": 4370
2631
+ },
2632
+ {
2633
+ "epoch": 0.72,
2634
+ "learning_rate": 1e-05,
2635
+ "loss": 1.3777,
2636
+ "step": 4380
2637
+ },
2638
+ {
2639
+ "epoch": 0.72,
2640
+ "learning_rate": 1e-05,
2641
+ "loss": 1.2144,
2642
+ "step": 4390
2643
+ },
2644
+ {
2645
+ "epoch": 0.72,
2646
+ "learning_rate": 1e-05,
2647
+ "loss": 1.3081,
2648
+ "step": 4400
2649
+ },
2650
+ {
2651
+ "epoch": 0.72,
2652
+ "learning_rate": 1e-05,
2653
+ "loss": 1.2445,
2654
+ "step": 4410
2655
+ },
2656
+ {
2657
+ "epoch": 0.72,
2658
+ "learning_rate": 1e-05,
2659
+ "loss": 1.1593,
2660
+ "step": 4420
2661
+ },
2662
+ {
2663
+ "epoch": 0.73,
2664
+ "learning_rate": 1e-05,
2665
+ "loss": 1.2987,
2666
+ "step": 4430
2667
+ },
2668
+ {
2669
+ "epoch": 0.73,
2670
+ "learning_rate": 1e-05,
2671
+ "loss": 1.2467,
2672
+ "step": 4440
2673
+ },
2674
+ {
2675
+ "epoch": 0.73,
2676
+ "learning_rate": 1e-05,
2677
+ "loss": 1.2139,
2678
+ "step": 4450
2679
+ },
2680
+ {
2681
+ "epoch": 0.73,
2682
+ "learning_rate": 1e-05,
2683
+ "loss": 1.2999,
2684
+ "step": 4460
2685
+ },
2686
+ {
2687
+ "epoch": 0.73,
2688
+ "learning_rate": 1e-05,
2689
+ "loss": 1.2681,
2690
+ "step": 4470
2691
+ },
2692
+ {
2693
+ "epoch": 0.73,
2694
+ "learning_rate": 1e-05,
2695
+ "loss": 1.3139,
2696
+ "step": 4480
2697
+ },
2698
+ {
2699
+ "epoch": 0.74,
2700
+ "learning_rate": 1e-05,
2701
+ "loss": 1.2685,
2702
+ "step": 4490
2703
+ },
2704
+ {
2705
+ "epoch": 0.74,
2706
+ "learning_rate": 1e-05,
2707
+ "loss": 1.3077,
2708
+ "step": 4500
2709
+ },
2710
+ {
2711
+ "epoch": 0.74,
2712
+ "learning_rate": 1e-05,
2713
+ "loss": 1.2559,
2714
+ "step": 4510
2715
+ },
2716
+ {
2717
+ "epoch": 0.74,
2718
+ "learning_rate": 1e-05,
2719
+ "loss": 1.2181,
2720
+ "step": 4520
2721
+ },
2722
+ {
2723
+ "epoch": 0.74,
2724
+ "learning_rate": 1e-05,
2725
+ "loss": 1.3011,
2726
+ "step": 4530
2727
+ },
2728
+ {
2729
+ "epoch": 0.74,
2730
+ "learning_rate": 1e-05,
2731
+ "loss": 1.3051,
2732
+ "step": 4540
2733
+ },
2734
+ {
2735
+ "epoch": 0.75,
2736
+ "learning_rate": 1e-05,
2737
+ "loss": 1.2037,
2738
+ "step": 4550
2739
+ },
2740
+ {
2741
+ "epoch": 0.75,
2742
+ "learning_rate": 1e-05,
2743
+ "loss": 1.2504,
2744
+ "step": 4560
2745
+ },
2746
+ {
2747
+ "epoch": 0.75,
2748
+ "learning_rate": 1e-05,
2749
+ "loss": 1.212,
2750
+ "step": 4570
2751
+ },
2752
+ {
2753
+ "epoch": 0.75,
2754
+ "learning_rate": 1e-05,
2755
+ "loss": 1.2554,
2756
+ "step": 4580
2757
+ },
2758
+ {
2759
+ "epoch": 0.75,
2760
+ "learning_rate": 1e-05,
2761
+ "loss": 1.2767,
2762
+ "step": 4590
2763
+ },
2764
+ {
2765
+ "epoch": 0.75,
2766
+ "learning_rate": 1e-05,
2767
+ "loss": 1.2845,
2768
+ "step": 4600
2769
+ },
2770
+ {
2771
+ "epoch": 0.76,
2772
+ "learning_rate": 1e-05,
2773
+ "loss": 1.2142,
2774
+ "step": 4610
2775
+ },
2776
+ {
2777
+ "epoch": 0.76,
2778
+ "learning_rate": 1e-05,
2779
+ "loss": 1.2353,
2780
+ "step": 4620
2781
+ },
2782
+ {
2783
+ "epoch": 0.76,
2784
+ "learning_rate": 1e-05,
2785
+ "loss": 1.2294,
2786
+ "step": 4630
2787
+ },
2788
+ {
2789
+ "epoch": 0.76,
2790
+ "learning_rate": 1e-05,
2791
+ "loss": 1.2984,
2792
+ "step": 4640
2793
+ },
2794
+ {
2795
+ "epoch": 0.76,
2796
+ "learning_rate": 1e-05,
2797
+ "loss": 1.279,
2798
+ "step": 4650
2799
+ },
2800
+ {
2801
+ "epoch": 0.76,
2802
+ "learning_rate": 1e-05,
2803
+ "loss": 1.2119,
2804
+ "step": 4660
2805
+ },
2806
+ {
2807
+ "epoch": 0.77,
2808
+ "learning_rate": 1e-05,
2809
+ "loss": 1.2493,
2810
+ "step": 4670
2811
+ },
2812
+ {
2813
+ "epoch": 0.77,
2814
+ "learning_rate": 1e-05,
2815
+ "loss": 1.1979,
2816
+ "step": 4680
2817
+ },
2818
+ {
2819
+ "epoch": 0.77,
2820
+ "learning_rate": 1e-05,
2821
+ "loss": 1.2422,
2822
+ "step": 4690
2823
+ },
2824
+ {
2825
+ "epoch": 0.77,
2826
+ "learning_rate": 1e-05,
2827
+ "loss": 1.2443,
2828
+ "step": 4700
2829
+ },
2830
+ {
2831
+ "epoch": 0.77,
2832
+ "learning_rate": 1e-05,
2833
+ "loss": 1.3392,
2834
+ "step": 4710
2835
+ },
2836
+ {
2837
+ "epoch": 0.77,
2838
+ "learning_rate": 1e-05,
2839
+ "loss": 1.315,
2840
+ "step": 4720
2841
+ },
2842
+ {
2843
+ "epoch": 0.77,
2844
+ "learning_rate": 1e-05,
2845
+ "loss": 1.2761,
2846
+ "step": 4730
2847
+ },
2848
+ {
2849
+ "epoch": 0.78,
2850
+ "learning_rate": 1e-05,
2851
+ "loss": 1.2308,
2852
+ "step": 4740
2853
+ },
2854
+ {
2855
+ "epoch": 0.78,
2856
+ "learning_rate": 1e-05,
2857
+ "loss": 1.2628,
2858
+ "step": 4750
2859
+ },
2860
+ {
2861
+ "epoch": 0.78,
2862
+ "learning_rate": 1e-05,
2863
+ "loss": 1.2887,
2864
+ "step": 4760
2865
+ },
2866
+ {
2867
+ "epoch": 0.78,
2868
+ "learning_rate": 1e-05,
2869
+ "loss": 1.2942,
2870
+ "step": 4770
2871
+ },
2872
+ {
2873
+ "epoch": 0.78,
2874
+ "learning_rate": 1e-05,
2875
+ "loss": 1.2921,
2876
+ "step": 4780
2877
+ },
2878
+ {
2879
+ "epoch": 0.78,
2880
+ "learning_rate": 1e-05,
2881
+ "loss": 1.2017,
2882
+ "step": 4790
2883
+ },
2884
+ {
2885
+ "epoch": 0.79,
2886
+ "learning_rate": 1e-05,
2887
+ "loss": 1.2328,
2888
+ "step": 4800
2889
+ },
2890
+ {
2891
+ "epoch": 0.79,
2892
+ "learning_rate": 1e-05,
2893
+ "loss": 1.2817,
2894
+ "step": 4810
2895
+ },
2896
+ {
2897
+ "epoch": 0.79,
2898
+ "learning_rate": 1e-05,
2899
+ "loss": 1.2046,
2900
+ "step": 4820
2901
+ },
2902
+ {
2903
+ "epoch": 0.79,
2904
+ "learning_rate": 1e-05,
2905
+ "loss": 1.2962,
2906
+ "step": 4830
2907
+ },
2908
+ {
2909
+ "epoch": 0.79,
2910
+ "learning_rate": 1e-05,
2911
+ "loss": 1.2223,
2912
+ "step": 4840
2913
+ },
2914
+ {
2915
+ "epoch": 0.79,
2916
+ "learning_rate": 1e-05,
2917
+ "loss": 1.3326,
2918
+ "step": 4850
2919
+ },
2920
+ {
2921
+ "epoch": 0.8,
2922
+ "learning_rate": 1e-05,
2923
+ "loss": 1.2584,
2924
+ "step": 4860
2925
+ },
2926
+ {
2927
+ "epoch": 0.8,
2928
+ "learning_rate": 1e-05,
2929
+ "loss": 1.1835,
2930
+ "step": 4870
2931
+ },
2932
+ {
2933
+ "epoch": 0.8,
2934
+ "learning_rate": 1e-05,
2935
+ "loss": 1.2967,
2936
+ "step": 4880
2937
+ },
2938
+ {
2939
+ "epoch": 0.8,
2940
+ "learning_rate": 1e-05,
2941
+ "loss": 1.2358,
2942
+ "step": 4890
2943
+ },
2944
+ {
2945
+ "epoch": 0.8,
2946
+ "learning_rate": 1e-05,
2947
+ "loss": 1.2331,
2948
+ "step": 4900
2949
+ },
2950
+ {
2951
+ "epoch": 0.8,
2952
+ "learning_rate": 1e-05,
2953
+ "loss": 1.2126,
2954
+ "step": 4910
2955
+ },
2956
+ {
2957
+ "epoch": 0.81,
2958
+ "learning_rate": 1e-05,
2959
+ "loss": 1.3323,
2960
+ "step": 4920
2961
+ },
2962
+ {
2963
+ "epoch": 0.81,
2964
+ "learning_rate": 1e-05,
2965
+ "loss": 1.2067,
2966
+ "step": 4930
2967
+ },
2968
+ {
2969
+ "epoch": 0.81,
2970
+ "learning_rate": 1e-05,
2971
+ "loss": 1.2419,
2972
+ "step": 4940
2973
+ },
2974
+ {
2975
+ "epoch": 0.81,
2976
+ "learning_rate": 1e-05,
2977
+ "loss": 1.2713,
2978
+ "step": 4950
2979
+ },
2980
+ {
2981
+ "epoch": 0.81,
2982
+ "learning_rate": 1e-05,
2983
+ "loss": 1.1894,
2984
+ "step": 4960
2985
+ },
2986
+ {
2987
+ "epoch": 0.81,
2988
+ "learning_rate": 1e-05,
2989
+ "loss": 1.2695,
2990
+ "step": 4970
2991
+ },
2992
+ {
2993
+ "epoch": 0.82,
2994
+ "learning_rate": 1e-05,
2995
+ "loss": 1.2709,
2996
+ "step": 4980
2997
+ },
2998
+ {
2999
+ "epoch": 0.82,
3000
+ "learning_rate": 1e-05,
3001
+ "loss": 1.2718,
3002
+ "step": 4990
3003
+ },
3004
+ {
3005
+ "epoch": 0.82,
3006
+ "learning_rate": 1e-05,
3007
+ "loss": 1.31,
3008
+ "step": 5000
3009
+ },
3010
+ {
3011
+ "epoch": 0.82,
3012
+ "learning_rate": 1e-05,
3013
+ "loss": 1.2691,
3014
+ "step": 5010
3015
+ },
3016
+ {
3017
+ "epoch": 0.82,
3018
+ "learning_rate": 1e-05,
3019
+ "loss": 1.2704,
3020
+ "step": 5020
3021
+ },
3022
+ {
3023
+ "epoch": 0.82,
3024
+ "learning_rate": 1e-05,
3025
+ "loss": 1.2374,
3026
+ "step": 5030
3027
+ },
3028
+ {
3029
+ "epoch": 0.83,
3030
+ "learning_rate": 1e-05,
3031
+ "loss": 1.3116,
3032
+ "step": 5040
3033
+ },
3034
+ {
3035
+ "epoch": 0.83,
3036
+ "learning_rate": 1e-05,
3037
+ "loss": 1.3039,
3038
+ "step": 5050
3039
+ },
3040
+ {
3041
+ "epoch": 0.83,
3042
+ "learning_rate": 1e-05,
3043
+ "loss": 1.223,
3044
+ "step": 5060
3045
+ },
3046
+ {
3047
+ "epoch": 0.83,
3048
+ "learning_rate": 1e-05,
3049
+ "loss": 1.2047,
3050
+ "step": 5070
3051
+ },
3052
+ {
3053
+ "epoch": 0.83,
3054
+ "learning_rate": 1e-05,
3055
+ "loss": 1.2721,
3056
+ "step": 5080
3057
+ },
3058
+ {
3059
+ "epoch": 0.83,
3060
+ "learning_rate": 1e-05,
3061
+ "loss": 1.292,
3062
+ "step": 5090
3063
+ },
3064
+ {
3065
+ "epoch": 0.84,
3066
+ "learning_rate": 1e-05,
3067
+ "loss": 1.2201,
3068
+ "step": 5100
3069
+ },
3070
+ {
3071
+ "epoch": 0.84,
3072
+ "learning_rate": 1e-05,
3073
+ "loss": 1.2874,
3074
+ "step": 5110
3075
+ },
3076
+ {
3077
+ "epoch": 0.84,
3078
+ "learning_rate": 1e-05,
3079
+ "loss": 1.2849,
3080
+ "step": 5120
3081
+ },
3082
+ {
3083
+ "epoch": 0.84,
3084
+ "learning_rate": 1e-05,
3085
+ "loss": 1.2056,
3086
+ "step": 5130
3087
+ },
3088
+ {
3089
+ "epoch": 0.84,
3090
+ "learning_rate": 1e-05,
3091
+ "loss": 1.2918,
3092
+ "step": 5140
3093
+ },
3094
+ {
3095
+ "epoch": 0.84,
3096
+ "learning_rate": 1e-05,
3097
+ "loss": 1.2618,
3098
+ "step": 5150
3099
+ },
3100
+ {
3101
+ "epoch": 0.85,
3102
+ "learning_rate": 1e-05,
3103
+ "loss": 1.2592,
3104
+ "step": 5160
3105
+ },
3106
+ {
3107
+ "epoch": 0.85,
3108
+ "learning_rate": 1e-05,
3109
+ "loss": 1.221,
3110
+ "step": 5170
3111
+ },
3112
+ {
3113
+ "epoch": 0.85,
3114
+ "learning_rate": 1e-05,
3115
+ "loss": 1.2401,
3116
+ "step": 5180
3117
+ },
3118
+ {
3119
+ "epoch": 0.85,
3120
+ "learning_rate": 1e-05,
3121
+ "loss": 1.2268,
3122
+ "step": 5190
3123
+ },
3124
+ {
3125
+ "epoch": 0.85,
3126
+ "learning_rate": 1e-05,
3127
+ "loss": 1.2221,
3128
+ "step": 5200
3129
+ },
3130
+ {
3131
+ "epoch": 0.85,
3132
+ "learning_rate": 1e-05,
3133
+ "loss": 1.1223,
3134
+ "step": 5210
3135
+ },
3136
+ {
3137
+ "epoch": 0.86,
3138
+ "learning_rate": 1e-05,
3139
+ "loss": 1.1579,
3140
+ "step": 5220
3141
+ },
3142
+ {
3143
+ "epoch": 0.86,
3144
+ "learning_rate": 1e-05,
3145
+ "loss": 1.2795,
3146
+ "step": 5230
3147
+ },
3148
+ {
3149
+ "epoch": 0.86,
3150
+ "learning_rate": 1e-05,
3151
+ "loss": 1.2462,
3152
+ "step": 5240
3153
+ },
3154
+ {
3155
+ "epoch": 0.86,
3156
+ "learning_rate": 1e-05,
3157
+ "loss": 1.2158,
3158
+ "step": 5250
3159
+ },
3160
+ {
3161
+ "epoch": 0.86,
3162
+ "learning_rate": 1e-05,
3163
+ "loss": 1.1765,
3164
+ "step": 5260
3165
+ },
3166
+ {
3167
+ "epoch": 0.86,
3168
+ "learning_rate": 1e-05,
3169
+ "loss": 1.2117,
3170
+ "step": 5270
3171
+ },
3172
+ {
3173
+ "epoch": 0.86,
3174
+ "learning_rate": 1e-05,
3175
+ "loss": 1.2117,
3176
+ "step": 5280
3177
+ },
3178
+ {
3179
+ "epoch": 0.87,
3180
+ "learning_rate": 1e-05,
3181
+ "loss": 1.204,
3182
+ "step": 5290
3183
+ },
3184
+ {
3185
+ "epoch": 0.87,
3186
+ "learning_rate": 1e-05,
3187
+ "loss": 1.2754,
3188
+ "step": 5300
3189
+ },
3190
+ {
3191
+ "epoch": 0.87,
3192
+ "learning_rate": 1e-05,
3193
+ "loss": 1.2453,
3194
+ "step": 5310
3195
+ },
3196
+ {
3197
+ "epoch": 0.87,
3198
+ "learning_rate": 1e-05,
3199
+ "loss": 1.2434,
3200
+ "step": 5320
3201
+ },
3202
+ {
3203
+ "epoch": 0.87,
3204
+ "learning_rate": 1e-05,
3205
+ "loss": 1.2598,
3206
+ "step": 5330
3207
+ },
3208
+ {
3209
+ "epoch": 0.87,
3210
+ "learning_rate": 1e-05,
3211
+ "loss": 1.2409,
3212
+ "step": 5340
3213
+ },
3214
+ {
3215
+ "epoch": 0.88,
3216
+ "learning_rate": 1e-05,
3217
+ "loss": 1.2302,
3218
+ "step": 5350
3219
+ },
3220
+ {
3221
+ "epoch": 0.88,
3222
+ "learning_rate": 1e-05,
3223
+ "loss": 1.2618,
3224
+ "step": 5360
3225
+ },
3226
+ {
3227
+ "epoch": 0.88,
3228
+ "learning_rate": 1e-05,
3229
+ "loss": 1.3057,
3230
+ "step": 5370
3231
+ },
3232
+ {
3233
+ "epoch": 0.88,
3234
+ "learning_rate": 1e-05,
3235
+ "loss": 1.2942,
3236
+ "step": 5380
3237
+ },
3238
+ {
3239
+ "epoch": 0.88,
3240
+ "learning_rate": 1e-05,
3241
+ "loss": 1.1696,
3242
+ "step": 5390
3243
+ },
3244
+ {
3245
+ "epoch": 0.88,
3246
+ "learning_rate": 1e-05,
3247
+ "loss": 1.2329,
3248
+ "step": 5400
3249
+ },
3250
+ {
3251
+ "epoch": 0.89,
3252
+ "learning_rate": 1e-05,
3253
+ "loss": 1.2805,
3254
+ "step": 5410
3255
+ },
3256
+ {
3257
+ "epoch": 0.89,
3258
+ "learning_rate": 1e-05,
3259
+ "loss": 1.2741,
3260
+ "step": 5420
3261
+ },
3262
+ {
3263
+ "epoch": 0.89,
3264
+ "learning_rate": 1e-05,
3265
+ "loss": 1.2481,
3266
+ "step": 5430
3267
+ },
3268
+ {
3269
+ "epoch": 0.89,
3270
+ "learning_rate": 1e-05,
3271
+ "loss": 1.2315,
3272
+ "step": 5440
3273
+ },
3274
+ {
3275
+ "epoch": 0.89,
3276
+ "learning_rate": 1e-05,
3277
+ "loss": 1.3099,
3278
+ "step": 5450
3279
+ },
3280
+ {
3281
+ "epoch": 0.89,
3282
+ "learning_rate": 1e-05,
3283
+ "loss": 1.2454,
3284
+ "step": 5460
3285
+ },
3286
+ {
3287
+ "epoch": 0.9,
3288
+ "learning_rate": 1e-05,
3289
+ "loss": 1.2796,
3290
+ "step": 5470
3291
+ },
3292
+ {
3293
+ "epoch": 0.9,
3294
+ "learning_rate": 1e-05,
3295
+ "loss": 1.2591,
3296
+ "step": 5480
3297
+ },
3298
+ {
3299
+ "epoch": 0.9,
3300
+ "learning_rate": 1e-05,
3301
+ "loss": 1.2764,
3302
+ "step": 5490
3303
+ },
3304
+ {
3305
+ "epoch": 0.9,
3306
+ "learning_rate": 1e-05,
3307
+ "loss": 1.2662,
3308
+ "step": 5500
3309
+ },
3310
+ {
3311
+ "epoch": 0.9,
3312
+ "learning_rate": 1e-05,
3313
+ "loss": 1.2407,
3314
+ "step": 5510
3315
+ },
3316
+ {
3317
+ "epoch": 0.9,
3318
+ "learning_rate": 1e-05,
3319
+ "loss": 1.219,
3320
+ "step": 5520
3321
+ },
3322
+ {
3323
+ "epoch": 0.91,
3324
+ "learning_rate": 1e-05,
3325
+ "loss": 1.2577,
3326
+ "step": 5530
3327
+ },
3328
+ {
3329
+ "epoch": 0.91,
3330
+ "learning_rate": 1e-05,
3331
+ "loss": 1.2551,
3332
+ "step": 5540
3333
+ },
3334
+ {
3335
+ "epoch": 0.91,
3336
+ "learning_rate": 1e-05,
3337
+ "loss": 1.1574,
3338
+ "step": 5550
3339
+ },
3340
+ {
3341
+ "epoch": 0.91,
3342
+ "learning_rate": 1e-05,
3343
+ "loss": 1.2744,
3344
+ "step": 5560
3345
+ },
3346
+ {
3347
+ "epoch": 0.91,
3348
+ "learning_rate": 1e-05,
3349
+ "loss": 1.2122,
3350
+ "step": 5570
3351
+ },
3352
+ {
3353
+ "epoch": 0.91,
3354
+ "learning_rate": 1e-05,
3355
+ "loss": 1.2706,
3356
+ "step": 5580
3357
+ },
3358
+ {
3359
+ "epoch": 0.92,
3360
+ "learning_rate": 1e-05,
3361
+ "loss": 1.2703,
3362
+ "step": 5590
3363
+ },
3364
+ {
3365
+ "epoch": 0.92,
3366
+ "learning_rate": 1e-05,
3367
+ "loss": 1.2772,
3368
+ "step": 5600
3369
+ },
3370
+ {
3371
+ "epoch": 0.92,
3372
+ "learning_rate": 1e-05,
3373
+ "loss": 1.2145,
3374
+ "step": 5610
3375
+ },
3376
+ {
3377
+ "epoch": 0.92,
3378
+ "learning_rate": 1e-05,
3379
+ "loss": 1.3134,
3380
+ "step": 5620
3381
+ },
3382
+ {
3383
+ "epoch": 0.92,
3384
+ "learning_rate": 1e-05,
3385
+ "loss": 1.234,
3386
+ "step": 5630
3387
+ },
3388
+ {
3389
+ "epoch": 0.92,
3390
+ "learning_rate": 1e-05,
3391
+ "loss": 1.2484,
3392
+ "step": 5640
3393
+ },
3394
+ {
3395
+ "epoch": 0.93,
3396
+ "learning_rate": 1e-05,
3397
+ "loss": 1.1774,
3398
+ "step": 5650
3399
+ },
3400
+ {
3401
+ "epoch": 0.93,
3402
+ "learning_rate": 1e-05,
3403
+ "loss": 1.3045,
3404
+ "step": 5660
3405
+ },
3406
+ {
3407
+ "epoch": 0.93,
3408
+ "learning_rate": 1e-05,
3409
+ "loss": 1.2948,
3410
+ "step": 5670
3411
+ },
3412
+ {
3413
+ "epoch": 0.93,
3414
+ "learning_rate": 1e-05,
3415
+ "loss": 1.25,
3416
+ "step": 5680
3417
+ },
3418
+ {
3419
+ "epoch": 0.93,
3420
+ "learning_rate": 1e-05,
3421
+ "loss": 1.2265,
3422
+ "step": 5690
3423
+ },
3424
+ {
3425
+ "epoch": 0.93,
3426
+ "learning_rate": 1e-05,
3427
+ "loss": 1.3164,
3428
+ "step": 5700
3429
+ },
3430
+ {
3431
+ "epoch": 0.94,
3432
+ "learning_rate": 1e-05,
3433
+ "loss": 1.2688,
3434
+ "step": 5710
3435
+ },
3436
+ {
3437
+ "epoch": 0.94,
3438
+ "learning_rate": 1e-05,
3439
+ "loss": 1.2615,
3440
+ "step": 5720
3441
+ },
3442
+ {
3443
+ "epoch": 0.94,
3444
+ "learning_rate": 1e-05,
3445
+ "loss": 1.2785,
3446
+ "step": 5730
3447
+ },
3448
+ {
3449
+ "epoch": 0.94,
3450
+ "learning_rate": 1e-05,
3451
+ "loss": 1.2813,
3452
+ "step": 5740
3453
+ },
3454
+ {
3455
+ "epoch": 0.94,
3456
+ "learning_rate": 1e-05,
3457
+ "loss": 1.2287,
3458
+ "step": 5750
3459
+ },
3460
+ {
3461
+ "epoch": 0.94,
3462
+ "learning_rate": 1e-05,
3463
+ "loss": 1.2914,
3464
+ "step": 5760
3465
+ },
3466
+ {
3467
+ "epoch": 0.95,
3468
+ "learning_rate": 1e-05,
3469
+ "loss": 1.2133,
3470
+ "step": 5770
3471
+ },
3472
+ {
3473
+ "epoch": 0.95,
3474
+ "learning_rate": 1e-05,
3475
+ "loss": 1.2405,
3476
+ "step": 5780
3477
+ },
3478
+ {
3479
+ "epoch": 0.95,
3480
+ "learning_rate": 1e-05,
3481
+ "loss": 1.3153,
3482
+ "step": 5790
3483
+ },
3484
+ {
3485
+ "epoch": 0.95,
3486
+ "learning_rate": 1e-05,
3487
+ "loss": 1.2094,
3488
+ "step": 5800
3489
+ },
3490
+ {
3491
+ "epoch": 0.95,
3492
+ "learning_rate": 1e-05,
3493
+ "loss": 1.2593,
3494
+ "step": 5810
3495
+ },
3496
+ {
3497
+ "epoch": 0.95,
3498
+ "learning_rate": 1e-05,
3499
+ "loss": 1.3192,
3500
+ "step": 5820
3501
+ },
3502
+ {
3503
+ "epoch": 0.96,
3504
+ "learning_rate": 1e-05,
3505
+ "loss": 1.2264,
3506
+ "step": 5830
3507
+ },
3508
+ {
3509
+ "epoch": 0.96,
3510
+ "learning_rate": 1e-05,
3511
+ "loss": 1.267,
3512
+ "step": 5840
3513
+ },
3514
+ {
3515
+ "epoch": 0.96,
3516
+ "learning_rate": 1e-05,
3517
+ "loss": 1.1878,
3518
+ "step": 5850
3519
+ },
3520
+ {
3521
+ "epoch": 0.96,
3522
+ "learning_rate": 1e-05,
3523
+ "loss": 1.2058,
3524
+ "step": 5860
3525
+ },
3526
+ {
3527
+ "epoch": 0.96,
3528
+ "learning_rate": 1e-05,
3529
+ "loss": 1.1589,
3530
+ "step": 5870
3531
+ },
3532
+ {
3533
+ "epoch": 0.96,
3534
+ "learning_rate": 1e-05,
3535
+ "loss": 1.1993,
3536
+ "step": 5880
3537
+ },
3538
+ {
3539
+ "epoch": 0.96,
3540
+ "learning_rate": 1e-05,
3541
+ "loss": 1.2312,
3542
+ "step": 5890
3543
+ },
3544
+ {
3545
+ "epoch": 0.97,
3546
+ "learning_rate": 1e-05,
3547
+ "loss": 1.2511,
3548
+ "step": 5900
3549
+ },
3550
+ {
3551
+ "epoch": 0.97,
3552
+ "learning_rate": 1e-05,
3553
+ "loss": 1.3163,
3554
+ "step": 5910
3555
+ },
3556
+ {
3557
+ "epoch": 0.97,
3558
+ "learning_rate": 1e-05,
3559
+ "loss": 1.2523,
3560
+ "step": 5920
3561
+ },
3562
+ {
3563
+ "epoch": 0.97,
3564
+ "learning_rate": 1e-05,
3565
+ "loss": 1.3137,
3566
+ "step": 5930
3567
+ },
3568
+ {
3569
+ "epoch": 0.97,
3570
+ "learning_rate": 1e-05,
3571
+ "loss": 1.2225,
3572
+ "step": 5940
3573
+ },
3574
+ {
3575
+ "epoch": 0.97,
3576
+ "learning_rate": 1e-05,
3577
+ "loss": 1.2642,
3578
+ "step": 5950
3579
+ },
3580
+ {
3581
+ "epoch": 0.98,
3582
+ "learning_rate": 1e-05,
3583
+ "loss": 1.2146,
3584
+ "step": 5960
3585
+ },
3586
+ {
3587
+ "epoch": 0.98,
3588
+ "learning_rate": 1e-05,
3589
+ "loss": 1.3105,
3590
+ "step": 5970
3591
+ },
3592
+ {
3593
+ "epoch": 0.98,
3594
+ "learning_rate": 1e-05,
3595
+ "loss": 1.2762,
3596
+ "step": 5980
3597
+ },
3598
+ {
3599
+ "epoch": 0.98,
3600
+ "learning_rate": 1e-05,
3601
+ "loss": 1.2242,
3602
+ "step": 5990
3603
+ },
3604
+ {
3605
+ "epoch": 0.98,
3606
+ "learning_rate": 1e-05,
3607
+ "loss": 1.2385,
3608
+ "step": 6000
3609
+ },
3610
+ {
3611
+ "epoch": 0.98,
3612
+ "learning_rate": 1e-05,
3613
+ "loss": 1.2467,
3614
+ "step": 6010
3615
+ },
3616
+ {
3617
+ "epoch": 0.99,
3618
+ "learning_rate": 1e-05,
3619
+ "loss": 1.2547,
3620
+ "step": 6020
3621
+ },
3622
+ {
3623
+ "epoch": 0.99,
3624
+ "learning_rate": 1e-05,
3625
+ "loss": 1.2799,
3626
+ "step": 6030
3627
+ },
3628
+ {
3629
+ "epoch": 0.99,
3630
+ "learning_rate": 1e-05,
3631
+ "loss": 1.2916,
3632
+ "step": 6040
3633
+ },
3634
+ {
3635
+ "epoch": 0.99,
3636
+ "learning_rate": 1e-05,
3637
+ "loss": 1.2668,
3638
+ "step": 6050
3639
+ },
3640
+ {
3641
+ "epoch": 0.99,
3642
+ "learning_rate": 1e-05,
3643
+ "loss": 1.1854,
3644
+ "step": 6060
3645
+ },
3646
+ {
3647
+ "epoch": 0.99,
3648
+ "learning_rate": 1e-05,
3649
+ "loss": 1.2529,
3650
+ "step": 6070
3651
+ },
3652
+ {
3653
+ "epoch": 1.0,
3654
+ "learning_rate": 1e-05,
3655
+ "loss": 1.2653,
3656
+ "step": 6080
3657
+ },
3658
+ {
3659
+ "epoch": 1.0,
3660
+ "learning_rate": 1e-05,
3661
+ "loss": 1.2418,
3662
+ "step": 6090
3663
+ },
3664
+ {
3665
+ "epoch": 1.0,
3666
+ "learning_rate": 1e-05,
3667
+ "loss": 1.246,
3668
+ "step": 6100
3669
+ },
3670
+ {
3671
+ "epoch": 1.0,
3672
+ "eval_oasst_export_accuracy": 0.6878104734550841,
3673
+ "eval_oasst_export_loss": 1.349609375,
3674
+ "eval_oasst_export_runtime": 19.3636,
3675
+ "eval_oasst_export_samples_per_second": 15.493,
3676
+ "eval_oasst_export_steps_per_second": 1.962,
3677
+ "step": 6104
3678
+ },
3679
+ {
3680
+ "epoch": 1.0,
3681
+ "eval_dolly15k_accuracy": 0.6627859972511925,
3682
+ "eval_dolly15k_loss": 1.2138671875,
3683
+ "eval_dolly15k_runtime": 15.5602,
3684
+ "eval_dolly15k_samples_per_second": 19.28,
3685
+ "eval_dolly15k_steps_per_second": 2.442,
3686
+ "step": 6104
3687
+ },
3688
+ {
3689
+ "epoch": 1.0,
3690
+ "eval__ruozhiba_accuracy": 0.5154994259471871,
3691
+ "eval__ruozhiba_loss": 1.7412109375,
3692
+ "eval__ruozhiba_runtime": 0.6619,
3693
+ "eval__ruozhiba_samples_per_second": 10.576,
3694
+ "eval__ruozhiba_steps_per_second": 1.511,
3695
+ "step": 6104
3696
+ },
3697
+ {
3698
+ "epoch": 1.0,
3699
+ "eval__sharegpt_format_accuracy": 0.8137771622392778,
3700
+ "eval__sharegpt_format_loss": 1.0361328125,
3701
+ "eval__sharegpt_format_runtime": 32.5298,
3702
+ "eval__sharegpt_format_samples_per_second": 15.371,
3703
+ "eval__sharegpt_format_steps_per_second": 1.937,
3704
+ "step": 6104
3705
+ },
3706
+ {
3707
+ "epoch": 1.0,
3708
+ "eval__similar_question_accuracy": 0.577728776185226,
3709
+ "eval__similar_question_loss": 1.6435546875,
3710
+ "eval__similar_question_runtime": 0.7886,
3711
+ "eval__similar_question_samples_per_second": 8.877,
3712
+ "eval__similar_question_steps_per_second": 1.268,
3713
+ "step": 6104
3714
+ },
3715
+ {
3716
+ "epoch": 1.0,
3717
+ "eval__open_domain_subject_accuracy": 0.6082298514730947,
3718
+ "eval__open_domain_subject_loss": 1.451171875,
3719
+ "eval__open_domain_subject_runtime": 2.7365,
3720
+ "eval__open_domain_subject_samples_per_second": 16.81,
3721
+ "eval__open_domain_subject_steps_per_second": 2.193,
3722
+ "step": 6104
3723
+ },
3724
+ {
3725
+ "epoch": 1.0,
3726
+ "eval__empdia_ly_07_17_accuracy": 0.6261699064074874,
3727
+ "eval__empdia_ly_07_17_loss": 1.33984375,
3728
+ "eval__empdia_ly_07_17_runtime": 5.1144,
3729
+ "eval__empdia_ly_07_17_samples_per_second": 17.988,
3730
+ "eval__empdia_ly_07_17_steps_per_second": 2.346,
3731
+ "step": 6104
3732
+ },
3733
+ {
3734
+ "epoch": 1.0,
3735
+ "eval__zuowen_accuracy": 0.9144507380228243,
3736
+ "eval__zuowen_loss": 0.299560546875,
3737
+ "eval__zuowen_runtime": 6.9808,
3738
+ "eval__zuowen_samples_per_second": 14.325,
3739
+ "eval__zuowen_steps_per_second": 1.862,
3740
+ "step": 6104
3741
+ },
3742
+ {
3743
+ "epoch": 1.0,
3744
+ "eval__psychat_6_29_and_11_15_mix_accuracy": 0.5055779183438758,
3745
+ "eval__psychat_6_29_and_11_15_mix_loss": 1.9296875,
3746
+ "eval__psychat_6_29_and_11_15_mix_runtime": 6.0911,
3747
+ "eval__psychat_6_29_and_11_15_mix_samples_per_second": 16.417,
3748
+ "eval__psychat_6_29_and_11_15_mix_steps_per_second": 2.134,
3749
+ "step": 6104
3750
+ },
3751
+ {
3752
+ "epoch": 1.0,
3753
+ "eval__psy_qa_1208_accuracy": 0.49772520473157417,
3754
+ "eval__psy_qa_1208_loss": 2.26171875,
3755
+ "eval__psy_qa_1208_runtime": 2.7612,
3756
+ "eval__psy_qa_1208_samples_per_second": 16.297,
3757
+ "eval__psy_qa_1208_steps_per_second": 2.173,
3758
+ "step": 6104
3759
+ },
3760
+ {
3761
+ "epoch": 1.0,
3762
+ "eval__socrates_teaching_accuracy": 0.6412340032115226,
3763
+ "eval__socrates_teaching_loss": 1.3828125,
3764
+ "eval__socrates_teaching_runtime": 5.1769,
3765
+ "eval__socrates_teaching_samples_per_second": 16.612,
3766
+ "eval__socrates_teaching_steps_per_second": 2.125,
3767
+ "step": 6104
3768
+ },
3769
+ {
3770
+ "epoch": 1.0,
3771
+ "eval__socrates_teaching_math1213_accuracy": 0.9996854356715948,
3772
+ "eval__socrates_teaching_math1213_loss": 0.0015439987182617188,
3773
+ "eval__socrates_teaching_math1213_runtime": 1.6723,
3774
+ "eval__socrates_teaching_math1213_samples_per_second": 14.949,
3775
+ "eval__socrates_teaching_math1213_steps_per_second": 2.392,
3776
+ "step": 6104
3777
+ },
3778
+ {
3779
+ "epoch": 1.0,
3780
+ "eval__search_accuracy": 0.6996122053270742,
3781
+ "eval__search_loss": 1.099609375,
3782
+ "eval__search_runtime": 5.9225,
3783
+ "eval__search_samples_per_second": 16.885,
3784
+ "eval__search_steps_per_second": 2.195,
3785
+ "step": 6104
3786
+ }
3787
+ ],
3788
+ "max_steps": 12208,
3789
+ "num_train_epochs": 2,
3790
+ "total_flos": 5281029455085568.0,
3791
+ "trial_name": null,
3792
+ "trial_params": null
3793
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:535ba74a271c3cad7b287704e9bf2a2d5382df0492157794efcf2367722a2425
3
+ size 6203
zero_to_fp32.py ADDED
@@ -0,0 +1,587 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
252
+ param_shapes = zero_model_states[0].param_shapes
253
+
254
+ # Reconstruction protocol:
255
+ #
256
+ # XXX: document this
257
+
258
+ if debug:
259
+ for i in range(world_size):
260
+ for j in range(len(fp32_flat_groups[0])):
261
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
262
+
263
+ # XXX: memory usage doubles here (zero2)
264
+ num_param_groups = len(fp32_flat_groups[0])
265
+ merged_single_partition_of_fp32_groups = []
266
+ for i in range(num_param_groups):
267
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
268
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
269
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
270
+ avail_numel = sum(
271
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
272
+
273
+ if debug:
274
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
275
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
276
+ # not asserting if there is a mismatch due to possible padding
277
+ print(f"Have {avail_numel} numels to process.")
278
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
279
+
280
+ # params
281
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
282
+ # out-of-core computing solution
283
+ total_numel = 0
284
+ total_params = 0
285
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
286
+ offset = 0
287
+ avail_numel = full_single_fp32_vector.numel()
288
+ for name, shape in shapes.items():
289
+
290
+ unpartitioned_numel = shape.numel()
291
+ total_numel += unpartitioned_numel
292
+ total_params += 1
293
+
294
+ if debug:
295
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
296
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
297
+ offset += unpartitioned_numel
298
+
299
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
300
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
301
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
302
+ # live optimizer object, so we are checking that the numbers are within the right range
303
+ align_to = 2 * world_size
304
+
305
+ def zero2_align(x):
306
+ return align_to * math.ceil(x / align_to)
307
+
308
+ if debug:
309
+ print(f"original offset={offset}, avail_numel={avail_numel}")
310
+
311
+ offset = zero2_align(offset)
312
+ avail_numel = zero2_align(avail_numel)
313
+
314
+ if debug:
315
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
316
+
317
+ # Sanity check
318
+ if offset != avail_numel:
319
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
320
+
321
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
322
+
323
+
324
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
325
+ state_dict = OrderedDict()
326
+
327
+ # buffers
328
+ buffers = zero_model_states[0].buffers
329
+ state_dict.update(buffers)
330
+ if debug:
331
+ print(f"added {len(buffers)} buffers")
332
+
333
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
334
+
335
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
336
+
337
+ # recover shared parameters
338
+ for pair in zero_model_states[0].shared_params:
339
+ if pair[1] in state_dict:
340
+ state_dict[pair[0]] = state_dict[pair[1]]
341
+
342
+ return state_dict
343
+
344
+
345
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
346
+ remainder = unpartitioned_numel % world_size
347
+ padding_numel = (world_size - remainder) if remainder else 0
348
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
349
+ return partitioned_numel, padding_numel
350
+
351
+
352
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
353
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
354
+ return
355
+
356
+ if debug:
357
+ for i in range(world_size):
358
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
359
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
360
+
361
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
362
+ wanted_params = len(frozen_param_shapes)
363
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
364
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
365
+ print(f'Frozen params: Have {avail_numel} numels to process.')
366
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
367
+
368
+ total_params = 0
369
+ total_numel = 0
370
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
371
+ total_params += 1
372
+ unpartitioned_numel = shape.numel()
373
+ total_numel += unpartitioned_numel
374
+
375
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
376
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
377
+
378
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
379
+
380
+ if debug:
381
+ print(
382
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
383
+ )
384
+
385
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
386
+
387
+
388
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
389
+ param_shapes = zero_model_states[0].param_shapes
390
+ avail_numel = fp32_flat_groups[0].numel() * world_size
391
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
392
+ # param, re-consolidating each param, while dealing with padding if any
393
+
394
+ # merge list of dicts, preserving order
395
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
396
+
397
+ if debug:
398
+ for i in range(world_size):
399
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
400
+
401
+ wanted_params = len(param_shapes)
402
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
403
+ # not asserting if there is a mismatch due to possible padding
404
+ avail_numel = fp32_flat_groups[0].numel() * world_size
405
+ print(f"Trainable params: Have {avail_numel} numels to process.")
406
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
407
+
408
+ # params
409
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
410
+ # out-of-core computing solution
411
+ offset = 0
412
+ total_numel = 0
413
+ total_params = 0
414
+ for name, shape in param_shapes.items():
415
+
416
+ unpartitioned_numel = shape.numel()
417
+ total_numel += unpartitioned_numel
418
+ total_params += 1
419
+
420
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
421
+
422
+ if debug:
423
+ print(
424
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
425
+ )
426
+
427
+ # XXX: memory usage doubles here
428
+ state_dict[name] = torch.cat(
429
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
430
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
431
+ offset += partitioned_numel
432
+
433
+ offset *= world_size
434
+
435
+ # Sanity check
436
+ if offset != avail_numel:
437
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
438
+
439
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
440
+
441
+
442
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
443
+ state_dict = OrderedDict()
444
+
445
+ # buffers
446
+ buffers = zero_model_states[0].buffers
447
+ state_dict.update(buffers)
448
+ if debug:
449
+ print(f"added {len(buffers)} buffers")
450
+
451
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
452
+
453
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
454
+
455
+ # recover shared parameters
456
+ for pair in zero_model_states[0].shared_params:
457
+ if pair[1] in state_dict:
458
+ state_dict[pair[0]] = state_dict[pair[1]]
459
+
460
+ return state_dict
461
+
462
+
463
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
464
+ """
465
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
466
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
467
+ via a model hub.
468
+
469
+ Args:
470
+ - ``checkpoint_dir``: path to the desired checkpoint folder
471
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
472
+
473
+ Returns:
474
+ - pytorch ``state_dict``
475
+
476
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
477
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
478
+ the checkpoint.
479
+
480
+ A typical usage might be ::
481
+
482
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
483
+ # do the training and checkpoint saving
484
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
485
+ model = model.cpu() # move to cpu
486
+ model.load_state_dict(state_dict)
487
+ # submit to model hub or save the model to share with others
488
+
489
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
490
+ application. i.e. you will need to re-initialize the deepspeed engine, since
491
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
492
+
493
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
494
+
495
+ """
496
+ if tag is None:
497
+ latest_path = os.path.join(checkpoint_dir, 'latest')
498
+ if os.path.isfile(latest_path):
499
+ with open(latest_path, 'r') as fd:
500
+ tag = fd.read().strip()
501
+ else:
502
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
503
+
504
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
505
+
506
+ if not os.path.isdir(ds_checkpoint_dir):
507
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
508
+
509
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
510
+
511
+
512
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
513
+ """
514
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
515
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
516
+
517
+ Args:
518
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
519
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
520
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
521
+ """
522
+
523
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
524
+ print(f"Saving fp32 state dict to {output_file}")
525
+ torch.save(state_dict, output_file)
526
+
527
+
528
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
529
+ """
530
+ 1. Put the provided model to cpu
531
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
532
+ 3. Load it into the provided model
533
+
534
+ Args:
535
+ - ``model``: the model object to update
536
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
537
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
538
+
539
+ Returns:
540
+ - ``model`: modified model
541
+
542
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
543
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
544
+ conveniently placed for you in the checkpoint folder.
545
+
546
+ A typical usage might be ::
547
+
548
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
549
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
550
+ # submit to model hub or save the model to share with others
551
+
552
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
553
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
554
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
555
+
556
+ """
557
+ logger.info(f"Extracting fp32 weights")
558
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
559
+
560
+ logger.info(f"Overwriting model with fp32 weights")
561
+ model = model.cpu()
562
+ model.load_state_dict(state_dict, strict=False)
563
+
564
+ return model
565
+
566
+
567
+ if __name__ == "__main__":
568
+
569
+ parser = argparse.ArgumentParser()
570
+ parser.add_argument("checkpoint_dir",
571
+ type=str,
572
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
573
+ parser.add_argument(
574
+ "output_file",
575
+ type=str,
576
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
577
+ parser.add_argument("-t",
578
+ "--tag",
579
+ type=str,
580
+ default=None,
581
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
582
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
583
+ args = parser.parse_args()
584
+
585
+ debug = args.debug
586
+
587
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)