update
Browse files- added_tokens.json +9 -0
- config.json +28 -0
- configuration_baichuan.py +46 -0
- generation_config.json +7 -0
- generation_utils.py +82 -0
- modeling_baichuan.py +572 -0
- pytorch_model-00001-of-00003.bin +3 -0
- pytorch_model-00002-of-00003.bin +3 -0
- pytorch_model-00003-of-00003.bin +3 -0
- pytorch_model.bin.index.json +290 -0
- quantizer.py +123 -0
- special_tokens_map.json +28 -0
- tokenization_baichuan.py +232 -0
- tokenizer.model +3 -0
- tokenizer_config.json +46 -0
- trainer_state.json +3793 -0
- training_args.bin +3 -0
- zero_to_fp32.py +587 -0
added_tokens.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<eot>": 64005,
|
3 |
+
"<|assistant|>": 64001,
|
4 |
+
"<|inner_thoughts|>": 64004,
|
5 |
+
"<|prefix_begin|>": 64002,
|
6 |
+
"<|prefix_end|>": 64000,
|
7 |
+
"<|prompter|>": 64006,
|
8 |
+
"<|system|>": 64003
|
9 |
+
}
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"_name_or_path": "/mnt/petrelfs/chenqin.p/dyh/educhat-base-002-13b-baichuan/",
|
4 |
+
"architectures": [
|
5 |
+
"BaichuanForCausalLM"
|
6 |
+
],
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_baichuan.BaichuanConfig",
|
9 |
+
"AutoModelForCausalLM": "modeling_baichuan.BaichuanForCausalLM"
|
10 |
+
},
|
11 |
+
"bos_token_id": 1,
|
12 |
+
"eos_token_id": 2,
|
13 |
+
"hidden_act": "silu",
|
14 |
+
"hidden_size": 5120,
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 13696,
|
17 |
+
"model_max_length": 4096,
|
18 |
+
"model_type": "baichuan",
|
19 |
+
"num_attention_heads": 40,
|
20 |
+
"num_hidden_layers": 40,
|
21 |
+
"pad_token_id": 0,
|
22 |
+
"rms_norm_eps": 1e-06,
|
23 |
+
"tie_word_embeddings": false,
|
24 |
+
"torch_dtype": "float16",
|
25 |
+
"transformers_version": "4.31.0",
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 64016
|
28 |
+
}
|
configuration_baichuan.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023, Baichuan Intelligent Technology. All rights reserved.
|
2 |
+
|
3 |
+
from transformers.configuration_utils import PretrainedConfig
|
4 |
+
|
5 |
+
class BaichuanConfig(PretrainedConfig):
|
6 |
+
model_type = "baichuan"
|
7 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
8 |
+
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
vocab_size=64000,
|
12 |
+
hidden_size=5120,
|
13 |
+
intermediate_size=13696,
|
14 |
+
num_hidden_layers=40,
|
15 |
+
num_attention_heads=40,
|
16 |
+
hidden_act="silu",
|
17 |
+
model_max_length=4096,
|
18 |
+
initializer_range=0.02,
|
19 |
+
rms_norm_eps=1e-6,
|
20 |
+
use_cache=True,
|
21 |
+
pad_token_id=0,
|
22 |
+
bos_token_id=1,
|
23 |
+
eos_token_id=2,
|
24 |
+
tie_word_embeddings=False,
|
25 |
+
gradient_checkpointing=False,
|
26 |
+
**kwargs,
|
27 |
+
):
|
28 |
+
self.vocab_size = vocab_size
|
29 |
+
self.model_max_length = model_max_length
|
30 |
+
self.hidden_size = hidden_size
|
31 |
+
self.intermediate_size = intermediate_size
|
32 |
+
self.num_hidden_layers = num_hidden_layers
|
33 |
+
self.num_attention_heads = num_attention_heads
|
34 |
+
self.hidden_act = hidden_act
|
35 |
+
self.initializer_range = initializer_range
|
36 |
+
self.rms_norm_eps = rms_norm_eps
|
37 |
+
self.use_cache = use_cache
|
38 |
+
self.gradient_checkpointing = gradient_checkpointing,
|
39 |
+
super().__init__(
|
40 |
+
pad_token_id=pad_token_id,
|
41 |
+
bos_token_id=bos_token_id,
|
42 |
+
eos_token_id=eos_token_id,
|
43 |
+
tie_word_embeddings=tie_word_embeddings,
|
44 |
+
**kwargs,
|
45 |
+
)
|
46 |
+
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"transformers_version": "4.31.0"
|
7 |
+
}
|
generation_utils.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
from queue import Queue
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
|
7 |
+
def build_chat_input(model, tokenizer, messages: List[dict], max_new_tokens: int=0):
|
8 |
+
def _parse_messages(messages, split_role="user"):
|
9 |
+
system, rounds = "", []
|
10 |
+
round = []
|
11 |
+
for i, message in enumerate(messages):
|
12 |
+
if message["role"] == "system":
|
13 |
+
assert i == 0
|
14 |
+
system = message["content"]
|
15 |
+
continue
|
16 |
+
if message["role"] == split_role and round:
|
17 |
+
rounds.append(round)
|
18 |
+
round = []
|
19 |
+
round.append(message)
|
20 |
+
if round:
|
21 |
+
rounds.append(round)
|
22 |
+
return system, rounds
|
23 |
+
|
24 |
+
max_new_tokens = max_new_tokens or model.generation_config.max_new_tokens
|
25 |
+
max_input_tokens = model.config.model_max_length - max_new_tokens
|
26 |
+
system, rounds = _parse_messages(messages, split_role="user")
|
27 |
+
system_tokens = tokenizer.encode(system)
|
28 |
+
max_history_tokens = max_input_tokens - len(system_tokens)
|
29 |
+
|
30 |
+
history_tokens = []
|
31 |
+
for round in rounds[::-1]:
|
32 |
+
round_tokens = []
|
33 |
+
for message in round:
|
34 |
+
if message["role"] == "user":
|
35 |
+
round_tokens.append(model.generation_config.user_token_id)
|
36 |
+
else:
|
37 |
+
round_tokens.append(model.generation_config.assistant_token_id)
|
38 |
+
round_tokens.extend(tokenizer.encode(message["content"]))
|
39 |
+
if len(history_tokens) == 0 or len(history_tokens) + len(round_tokens) <= max_history_tokens:
|
40 |
+
history_tokens = round_tokens + history_tokens # concat left
|
41 |
+
if len(history_tokens) < max_history_tokens:
|
42 |
+
continue
|
43 |
+
break
|
44 |
+
|
45 |
+
input_tokens = system_tokens + history_tokens
|
46 |
+
if messages[-1]["role"] != "assistant":
|
47 |
+
input_tokens.append(model.generation_config.assistant_token_id)
|
48 |
+
input_tokens = input_tokens[-max_input_tokens:] # truncate left
|
49 |
+
return torch.LongTensor([input_tokens]).to(model.device)
|
50 |
+
|
51 |
+
|
52 |
+
class TextIterStreamer:
|
53 |
+
def __init__(self, tokenizer, skip_prompt=False, skip_special_tokens=False):
|
54 |
+
self.tokenizer = tokenizer
|
55 |
+
self.skip_prompt = skip_prompt
|
56 |
+
self.skip_special_tokens = skip_special_tokens
|
57 |
+
self.tokens = []
|
58 |
+
self.text_queue = Queue()
|
59 |
+
self.next_tokens_are_prompt = True
|
60 |
+
|
61 |
+
def put(self, value):
|
62 |
+
if self.skip_prompt and self.next_tokens_are_prompt:
|
63 |
+
self.next_tokens_are_prompt = False
|
64 |
+
else:
|
65 |
+
if len(value.shape) > 1:
|
66 |
+
value = value[0]
|
67 |
+
self.tokens.extend(value.tolist())
|
68 |
+
self.text_queue.put(
|
69 |
+
self.tokenizer.decode(self.tokens, skip_special_tokens=self.skip_special_tokens))
|
70 |
+
|
71 |
+
def end(self):
|
72 |
+
self.text_queue.put(None)
|
73 |
+
|
74 |
+
def __iter__(self):
|
75 |
+
return self
|
76 |
+
|
77 |
+
def __next__(self):
|
78 |
+
value = self.text_queue.get()
|
79 |
+
if value is None:
|
80 |
+
raise StopIteration()
|
81 |
+
else:
|
82 |
+
return value
|
modeling_baichuan.py
ADDED
@@ -0,0 +1,572 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023, Baichuan Intelligent Technology. All rights reserved.
|
2 |
+
|
3 |
+
import math
|
4 |
+
from threading import Thread
|
5 |
+
from typing import List, Optional, Tuple, Union
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.utils.checkpoint
|
9 |
+
from torch.nn import CrossEntropyLoss
|
10 |
+
from transformers import PreTrainedModel
|
11 |
+
from transformers.activations import ACT2FN
|
12 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
13 |
+
from transformers.utils import logging
|
14 |
+
from transformers.generation.utils import GenerationConfig
|
15 |
+
|
16 |
+
from .configuration_baichuan import BaichuanConfig
|
17 |
+
from .generation_utils import build_chat_input, TextIterStreamer
|
18 |
+
|
19 |
+
logger = logging.get_logger(__name__)
|
20 |
+
|
21 |
+
|
22 |
+
def _get_interleave(n):
|
23 |
+
def _get_interleave_power_of_2(n):
|
24 |
+
start = (2 ** (-2 ** -(math.log2(n) - 3)))
|
25 |
+
ratio = start
|
26 |
+
return [start * ratio ** i for i in range(n)]
|
27 |
+
|
28 |
+
if math.log2(n).is_integer():
|
29 |
+
return _get_interleave_power_of_2(n)
|
30 |
+
else:
|
31 |
+
closest_power_of_2 = 2 ** math.floor(math.log2(n))
|
32 |
+
return _get_interleave_power_of_2(closest_power_of_2) + \
|
33 |
+
_get_interleave(2 * closest_power_of_2)[0::2][:n - closest_power_of_2]
|
34 |
+
|
35 |
+
def _fill_with_neg_inf(t):
|
36 |
+
"""FP16-compatible function that fills a tensor with -inf."""
|
37 |
+
return t.float().fill_(float("-inf")).type_as(t)
|
38 |
+
|
39 |
+
def _gen_alibi_mask(n_head, max_pos):
|
40 |
+
"""used in inference only"""
|
41 |
+
slopes = torch.Tensor(_get_interleave(n_head))
|
42 |
+
alibi = slopes.unsqueeze(1).unsqueeze(1) * torch.arange(max_pos).unsqueeze(0).unsqueeze(0).expand(
|
43 |
+
n_head, -1, -1)
|
44 |
+
alibi = alibi.view(n_head, 1, max_pos)
|
45 |
+
alibi_mask = torch.triu(
|
46 |
+
_fill_with_neg_inf(torch.zeros([max_pos, max_pos])), 1
|
47 |
+
)
|
48 |
+
alibi_mask = alibi_mask.unsqueeze(0) + alibi
|
49 |
+
return alibi_mask
|
50 |
+
|
51 |
+
def _buffered_future_mask(tensor, maxpos, alibi, attn_heads):
|
52 |
+
"""used in training only"""
|
53 |
+
dim = tensor.size(1)
|
54 |
+
_future_mask = torch.triu(
|
55 |
+
_fill_with_neg_inf(torch.zeros([maxpos, maxpos])), 1
|
56 |
+
)
|
57 |
+
_future_mask = _future_mask.unsqueeze(0) + alibi
|
58 |
+
_future_mask = _future_mask.to(tensor)
|
59 |
+
return _future_mask[:tensor.shape[0] * attn_heads, :maxpos, :maxpos]
|
60 |
+
|
61 |
+
|
62 |
+
class RMSNorm(torch.nn.Module):
|
63 |
+
def __init__(self, hidden_size, epsilon=1e-6):
|
64 |
+
super().__init__()
|
65 |
+
self.weight = torch.nn.Parameter(torch.empty(hidden_size))
|
66 |
+
self.epsilon = epsilon
|
67 |
+
|
68 |
+
def forward(self, hidden_states):
|
69 |
+
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
70 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.epsilon)
|
71 |
+
|
72 |
+
# convert into half-precision
|
73 |
+
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
74 |
+
hidden_states = hidden_states.to(self.weight.dtype)
|
75 |
+
|
76 |
+
return self.weight * hidden_states
|
77 |
+
|
78 |
+
|
79 |
+
class MLP(torch.nn.Module):
|
80 |
+
def __init__(
|
81 |
+
self,
|
82 |
+
hidden_size: int,
|
83 |
+
intermediate_size: int,
|
84 |
+
hidden_act: str,
|
85 |
+
):
|
86 |
+
super().__init__()
|
87 |
+
self.gate_proj = torch.nn.Linear(hidden_size, intermediate_size, bias=False)
|
88 |
+
self.down_proj = torch.nn.Linear(intermediate_size, hidden_size, bias=False)
|
89 |
+
self.up_proj = torch.nn.Linear(hidden_size, intermediate_size, bias=False)
|
90 |
+
self.act_fn = ACT2FN[hidden_act]
|
91 |
+
|
92 |
+
def forward(self, x):
|
93 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
94 |
+
|
95 |
+
|
96 |
+
class BaichuanAttention(torch.nn.Module):
|
97 |
+
def __init__(self, config: BaichuanConfig):
|
98 |
+
super().__init__()
|
99 |
+
self.config = config
|
100 |
+
self.hidden_size = config.hidden_size
|
101 |
+
self.num_heads = config.num_attention_heads
|
102 |
+
self.head_dim = self.hidden_size // self.num_heads
|
103 |
+
self.max_position_embeddings = config.model_max_length
|
104 |
+
|
105 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
106 |
+
raise ValueError(
|
107 |
+
f"hidden_size {self.hidden_size} is not divisible by num_heads {self.num_heads}"
|
108 |
+
)
|
109 |
+
self.W_pack = torch.nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False)
|
110 |
+
self.o_proj = torch.nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
111 |
+
|
112 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
113 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
114 |
+
|
115 |
+
def forward(
|
116 |
+
self,
|
117 |
+
hidden_states: torch.Tensor,
|
118 |
+
attention_mask: Optional[torch.Tensor] = None,
|
119 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
120 |
+
output_attentions: bool = False,
|
121 |
+
use_cache: bool = False,
|
122 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
123 |
+
|
124 |
+
bsz, q_len, _ = hidden_states.size()
|
125 |
+
|
126 |
+
proj = self.W_pack(hidden_states)
|
127 |
+
proj = proj.unflatten(-1, (3, self.hidden_size)).unsqueeze(0).transpose(0, -2).squeeze(-2)
|
128 |
+
query_states = proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
129 |
+
key_states = proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
130 |
+
value_states = proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
131 |
+
|
132 |
+
kv_seq_len = key_states.shape[-2]
|
133 |
+
if past_key_value is not None:
|
134 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
135 |
+
|
136 |
+
if past_key_value is not None:
|
137 |
+
# reuse k, v, self_attention
|
138 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
139 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
140 |
+
|
141 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
142 |
+
|
143 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
144 |
+
|
145 |
+
if attention_mask is not None:
|
146 |
+
if q_len == 1: # inference with cache
|
147 |
+
if len(attention_mask.size()) == 4:
|
148 |
+
attention_mask = attention_mask[:, :, -1:, :]
|
149 |
+
else:
|
150 |
+
attention_mask = attention_mask[:, -1:, :]
|
151 |
+
attn_weights = attn_weights + attention_mask
|
152 |
+
attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
|
153 |
+
|
154 |
+
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
|
155 |
+
|
156 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
157 |
+
|
158 |
+
attn_output = attn_output.transpose(1, 2)
|
159 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
160 |
+
attn_output = self.o_proj(attn_output)
|
161 |
+
|
162 |
+
if not output_attentions:
|
163 |
+
attn_weights = None
|
164 |
+
|
165 |
+
return attn_output, attn_weights, past_key_value
|
166 |
+
|
167 |
+
|
168 |
+
class BaichuanLayer(torch.nn.Module):
|
169 |
+
def __init__(self, config: BaichuanConfig):
|
170 |
+
super().__init__()
|
171 |
+
self.hidden_size = config.hidden_size
|
172 |
+
self.self_attn = BaichuanAttention(config=config)
|
173 |
+
self.mlp = MLP(
|
174 |
+
hidden_size=self.hidden_size,
|
175 |
+
intermediate_size=config.intermediate_size,
|
176 |
+
hidden_act=config.hidden_act,
|
177 |
+
)
|
178 |
+
self.input_layernorm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps)
|
179 |
+
self.post_attention_layernorm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps)
|
180 |
+
|
181 |
+
def forward(
|
182 |
+
self,
|
183 |
+
hidden_states: torch.Tensor,
|
184 |
+
attention_mask: Optional[torch.Tensor] = None,
|
185 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
186 |
+
output_attentions: Optional[bool] = False,
|
187 |
+
use_cache: Optional[bool] = False,
|
188 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
189 |
+
|
190 |
+
residual = hidden_states
|
191 |
+
|
192 |
+
hidden_states = self.input_layernorm(hidden_states)
|
193 |
+
|
194 |
+
# Self Attention
|
195 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
196 |
+
hidden_states=hidden_states,
|
197 |
+
attention_mask=attention_mask,
|
198 |
+
past_key_value=past_key_value,
|
199 |
+
output_attentions=output_attentions,
|
200 |
+
use_cache=use_cache,
|
201 |
+
)
|
202 |
+
hidden_states = residual + hidden_states
|
203 |
+
|
204 |
+
# Fully Connected
|
205 |
+
residual = hidden_states
|
206 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
207 |
+
hidden_states = self.mlp(hidden_states)
|
208 |
+
hidden_states = residual + hidden_states
|
209 |
+
|
210 |
+
outputs = (hidden_states,)
|
211 |
+
|
212 |
+
if use_cache:
|
213 |
+
outputs += (present_key_value,)
|
214 |
+
|
215 |
+
return outputs
|
216 |
+
|
217 |
+
|
218 |
+
class BaichuanPreTrainedModel(PreTrainedModel):
|
219 |
+
config_class = BaichuanConfig
|
220 |
+
base_model_prefix = "model"
|
221 |
+
supports_gradient_checkpointing = True
|
222 |
+
_no_split_modules = ["BaichuanLayer"]
|
223 |
+
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
|
224 |
+
|
225 |
+
def _init_weights(self, module):
|
226 |
+
std = self.config.initializer_range
|
227 |
+
if isinstance(module, torch.nn.Linear):
|
228 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
229 |
+
if module.bias is not None:
|
230 |
+
module.bias.data.zero_()
|
231 |
+
elif isinstance(module, torch.nn.Embedding):
|
232 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
233 |
+
if module.padding_idx is not None:
|
234 |
+
module.weight.data[module.padding_idx].zero_()
|
235 |
+
|
236 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
237 |
+
if isinstance(module, BaichuanModel):
|
238 |
+
module.gradient_checkpointing = value
|
239 |
+
|
240 |
+
|
241 |
+
class BaichuanModel(BaichuanPreTrainedModel):
|
242 |
+
def __init__(self, config: BaichuanConfig):
|
243 |
+
super().__init__(config)
|
244 |
+
self.padding_idx = config.pad_token_id
|
245 |
+
self.vocab_size = config.vocab_size
|
246 |
+
self.n_head = config.num_attention_heads
|
247 |
+
self.embed_tokens = torch.nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
248 |
+
self.layers = torch.nn.ModuleList([BaichuanLayer(config) for _ in range(config.num_hidden_layers)])
|
249 |
+
self.norm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps)
|
250 |
+
|
251 |
+
self.gradient_checkpointing = config.gradient_checkpointing
|
252 |
+
self.post_init()
|
253 |
+
self.max_cache_pos = config.model_max_length
|
254 |
+
self.first_run = True
|
255 |
+
self.alibi_mask = None
|
256 |
+
|
257 |
+
def get_input_embeddings(self):
|
258 |
+
return self.embed_tokens
|
259 |
+
|
260 |
+
def set_input_embeddings(self, value):
|
261 |
+
self.embed_tokens = value
|
262 |
+
|
263 |
+
def get_alibi_mask(self, tensor, seq_length_with_past):
|
264 |
+
if self.training:
|
265 |
+
slopes = torch.Tensor(_get_interleave(self.n_head))
|
266 |
+
alibi = slopes.unsqueeze(1).unsqueeze(1) * torch.arange(seq_length_with_past).unsqueeze(0).unsqueeze(0).expand(
|
267 |
+
self.n_head,
|
268 |
+
-1, -1)
|
269 |
+
alibi = alibi.view(self.n_head, 1, seq_length_with_past)
|
270 |
+
mask = _buffered_future_mask(tensor, seq_length_with_past, alibi, self.n_head)
|
271 |
+
else:
|
272 |
+
if self.first_run:
|
273 |
+
self.first_run = False
|
274 |
+
self.register_buffer("future_mask", _gen_alibi_mask(self.n_head, self.max_cache_pos).to(tensor), persistent=False)
|
275 |
+
if seq_length_with_past > self.max_cache_pos:
|
276 |
+
self.max_cache_pos = seq_length_with_past
|
277 |
+
self.register_buffer("future_mask", _gen_alibi_mask(self.n_head, self.max_cache_pos).to(tensor), persistent=False)
|
278 |
+
mask = self.future_mask[:self.n_head, :seq_length_with_past, :seq_length_with_past]
|
279 |
+
return mask
|
280 |
+
|
281 |
+
def forward(
|
282 |
+
self,
|
283 |
+
input_ids: torch.LongTensor = None,
|
284 |
+
attention_mask: Optional[torch.Tensor] = None,
|
285 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
286 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
287 |
+
use_cache: Optional[bool] = False,
|
288 |
+
output_attentions: Optional[bool] = False,
|
289 |
+
output_hidden_states: Optional[bool] = False,
|
290 |
+
return_dict: Optional[bool] = True,
|
291 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
292 |
+
|
293 |
+
if input_ids is not None and inputs_embeds is not None:
|
294 |
+
raise ValueError("You cannot provide both input_ids and inputs_embeds simultaneously")
|
295 |
+
elif input_ids is not None:
|
296 |
+
batch_size, seq_length = input_ids.shape
|
297 |
+
elif inputs_embeds is not None:
|
298 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
299 |
+
else:
|
300 |
+
raise ValueError("You need to provide input_ids or inputs_embeds")
|
301 |
+
|
302 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
303 |
+
|
304 |
+
seq_length_with_past = seq_length
|
305 |
+
|
306 |
+
if past_key_values is not None:
|
307 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
308 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
309 |
+
|
310 |
+
if inputs_embeds is None:
|
311 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
312 |
+
|
313 |
+
if self.training:
|
314 |
+
if self.alibi_mask is None or self.alibi_mask.shape[-1] != seq_length_with_past:
|
315 |
+
self.alibi_mask = self.get_alibi_mask(inputs_embeds, seq_length_with_past)
|
316 |
+
alibi_mask = self.alibi_mask
|
317 |
+
else:
|
318 |
+
alibi_mask = self.get_alibi_mask(inputs_embeds, seq_length_with_past)
|
319 |
+
|
320 |
+
if attention_mask is not None:
|
321 |
+
if len(attention_mask.shape) == 2:
|
322 |
+
expanded_mask = attention_mask.to(alibi_mask.dtype)
|
323 |
+
expanded_mask = torch.tril(torch.gt(expanded_mask[:, :, None] * expanded_mask[:, None, :], 0)
|
324 |
+
) * torch.eq(expanded_mask[:, :, None] - expanded_mask[:, None, :], 0)
|
325 |
+
else:
|
326 |
+
expanded_mask = attention_mask
|
327 |
+
bsz = inputs_embeds.size(0)
|
328 |
+
src_len, tgt_len = alibi_mask.size()[-2:]
|
329 |
+
expanded_mask = expanded_mask.unsqueeze(1).expand(bsz, 1, src_len, tgt_len).to(alibi_mask.dtype)
|
330 |
+
inverted_mask = 1.0 - expanded_mask
|
331 |
+
inverted_mask = inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(alibi_mask.dtype).min)
|
332 |
+
attention_mask = inverted_mask + alibi_mask.unsqueeze(0)
|
333 |
+
else:
|
334 |
+
attention_mask = alibi_mask
|
335 |
+
|
336 |
+
hidden_states = inputs_embeds
|
337 |
+
|
338 |
+
if self.gradient_checkpointing and self.training:
|
339 |
+
if use_cache:
|
340 |
+
logger.warning_once(
|
341 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
342 |
+
)
|
343 |
+
use_cache = False
|
344 |
+
|
345 |
+
# decoder layers
|
346 |
+
all_hidden_states = () if output_hidden_states else None
|
347 |
+
all_self_attns = () if output_attentions else None
|
348 |
+
next_decoder_cache = () if use_cache else None
|
349 |
+
|
350 |
+
for idx, decoder_layer in enumerate(self.layers):
|
351 |
+
if output_hidden_states:
|
352 |
+
all_hidden_states += (hidden_states,)
|
353 |
+
|
354 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
355 |
+
|
356 |
+
if self.gradient_checkpointing and self.training:
|
357 |
+
|
358 |
+
def create_custom_forward(module):
|
359 |
+
def custom_forward(*inputs):
|
360 |
+
# None for past_key_value
|
361 |
+
return module(*inputs, output_attentions, None)
|
362 |
+
|
363 |
+
return custom_forward
|
364 |
+
|
365 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
366 |
+
create_custom_forward(decoder_layer),
|
367 |
+
hidden_states,
|
368 |
+
attention_mask,
|
369 |
+
None,
|
370 |
+
)
|
371 |
+
else:
|
372 |
+
layer_outputs = decoder_layer(
|
373 |
+
hidden_states,
|
374 |
+
attention_mask=attention_mask,
|
375 |
+
past_key_value=past_key_value,
|
376 |
+
output_attentions=output_attentions,
|
377 |
+
use_cache=use_cache,
|
378 |
+
)
|
379 |
+
|
380 |
+
hidden_states = layer_outputs[0]
|
381 |
+
|
382 |
+
if use_cache:
|
383 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
384 |
+
|
385 |
+
if output_attentions:
|
386 |
+
all_self_attns += (layer_outputs[1],)
|
387 |
+
|
388 |
+
hidden_states = self.norm(hidden_states)
|
389 |
+
|
390 |
+
# add hidden states from the last decoder layer
|
391 |
+
if output_hidden_states:
|
392 |
+
all_hidden_states += (hidden_states,)
|
393 |
+
|
394 |
+
next_cache = next_decoder_cache if use_cache else None
|
395 |
+
if not return_dict:
|
396 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
397 |
+
return BaseModelOutputWithPast(
|
398 |
+
last_hidden_state=hidden_states,
|
399 |
+
past_key_values=next_cache,
|
400 |
+
hidden_states=all_hidden_states,
|
401 |
+
attentions=all_self_attns,
|
402 |
+
)
|
403 |
+
|
404 |
+
|
405 |
+
class BaichuanForCausalLM(BaichuanPreTrainedModel):
|
406 |
+
def __init__(self, config):
|
407 |
+
super().__init__(config)
|
408 |
+
self.model = BaichuanModel(config)
|
409 |
+
self.lm_head = torch.nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
410 |
+
|
411 |
+
# Initialize weights and apply final processing
|
412 |
+
self.post_init()
|
413 |
+
|
414 |
+
def get_input_embeddings(self):
|
415 |
+
return self.model.embed_tokens
|
416 |
+
|
417 |
+
def set_input_embeddings(self, value):
|
418 |
+
self.model.embed_tokens = value
|
419 |
+
|
420 |
+
def get_output_embeddings(self):
|
421 |
+
return self.lm_head
|
422 |
+
|
423 |
+
def set_output_embeddings(self, new_embeddings):
|
424 |
+
self.lm_head = new_embeddings
|
425 |
+
|
426 |
+
def set_decoder(self, decoder):
|
427 |
+
self.model = decoder
|
428 |
+
|
429 |
+
def get_decoder(self):
|
430 |
+
return self.model
|
431 |
+
|
432 |
+
def forward(
|
433 |
+
self,
|
434 |
+
input_ids: torch.LongTensor = None,
|
435 |
+
attention_mask: Optional[torch.Tensor] = None,
|
436 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
437 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
438 |
+
labels: Optional[torch.LongTensor] = None,
|
439 |
+
use_cache: Optional[bool] = None,
|
440 |
+
output_attentions: Optional[bool] = False,
|
441 |
+
output_hidden_states: Optional[bool] = False,
|
442 |
+
return_dict: Optional[bool] = True,
|
443 |
+
**kwargs
|
444 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
445 |
+
|
446 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
447 |
+
|
448 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
449 |
+
outputs = self.model(
|
450 |
+
input_ids=input_ids,
|
451 |
+
attention_mask=attention_mask,
|
452 |
+
past_key_values=past_key_values,
|
453 |
+
inputs_embeds=inputs_embeds,
|
454 |
+
use_cache=use_cache,
|
455 |
+
output_attentions=output_attentions,
|
456 |
+
output_hidden_states=output_hidden_states,
|
457 |
+
return_dict=return_dict,
|
458 |
+
)
|
459 |
+
|
460 |
+
hidden_states = outputs[0]
|
461 |
+
logits = self.lm_head(hidden_states)
|
462 |
+
|
463 |
+
loss = None
|
464 |
+
if labels is not None:
|
465 |
+
# Shift so that tokens < n predict n
|
466 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
467 |
+
shift_labels = labels[..., 1:].contiguous()
|
468 |
+
# Flatten the tokens
|
469 |
+
loss_fct = CrossEntropyLoss()
|
470 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
471 |
+
shift_labels = shift_labels.view(-1)
|
472 |
+
# Enable model parallelism
|
473 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
474 |
+
loss = loss_fct(shift_logits, shift_labels)
|
475 |
+
|
476 |
+
if not return_dict:
|
477 |
+
output = (logits,) + outputs[1:]
|
478 |
+
return (loss,) + output if loss is not None else output
|
479 |
+
|
480 |
+
return CausalLMOutputWithPast(
|
481 |
+
loss=loss,
|
482 |
+
logits=logits,
|
483 |
+
past_key_values=outputs.past_key_values,
|
484 |
+
hidden_states=outputs.hidden_states,
|
485 |
+
attentions=outputs.attentions,
|
486 |
+
)
|
487 |
+
|
488 |
+
def prepare_inputs_for_generation(
|
489 |
+
self,
|
490 |
+
input_ids: torch.LongTensor,
|
491 |
+
past_key_values: Optional[torch.Tensor] = None,
|
492 |
+
attention_mask: Optional[torch.Tensor] = None,
|
493 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
494 |
+
**kwargs
|
495 |
+
):
|
496 |
+
if past_key_values:
|
497 |
+
input_ids = input_ids[:, -1:]
|
498 |
+
|
499 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
500 |
+
if inputs_embeds is not None and past_key_values is None:
|
501 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
502 |
+
else:
|
503 |
+
model_inputs = {"input_ids": input_ids}
|
504 |
+
|
505 |
+
model_inputs.update(
|
506 |
+
{
|
507 |
+
"past_key_values": past_key_values,
|
508 |
+
"use_cache": kwargs.get("use_cache"),
|
509 |
+
"attention_mask": attention_mask
|
510 |
+
}
|
511 |
+
)
|
512 |
+
return model_inputs
|
513 |
+
|
514 |
+
@staticmethod
|
515 |
+
def _reorder_cache(past_key_values, beam_idx):
|
516 |
+
return tuple(
|
517 |
+
tuple(past_state.index_select(0, beam_idx) for past_state in layer_past)
|
518 |
+
for layer_past in past_key_values
|
519 |
+
)
|
520 |
+
|
521 |
+
def quantize(self, bits: int):
|
522 |
+
try:
|
523 |
+
from .quantizer import QLinear
|
524 |
+
except ImportError:
|
525 |
+
raise ImportError(
|
526 |
+
f"Needs QLinear to run quantize."
|
527 |
+
)
|
528 |
+
|
529 |
+
for layer in self.model.layers:
|
530 |
+
layer.self_attn.W_pack = QLinear(
|
531 |
+
bits=bits,
|
532 |
+
weight=layer.self_attn.W_pack.weight,
|
533 |
+
bias = None,
|
534 |
+
)
|
535 |
+
layer.self_attn.o_proj = QLinear(
|
536 |
+
bits=bits,
|
537 |
+
weight=layer.self_attn.o_proj.weight,
|
538 |
+
bias = None,
|
539 |
+
)
|
540 |
+
layer.mlp.gate_proj = QLinear(
|
541 |
+
bits=bits,
|
542 |
+
weight=layer.mlp.gate_proj.weight,
|
543 |
+
bias = None,
|
544 |
+
)
|
545 |
+
layer.mlp.down_proj = QLinear(
|
546 |
+
bits=bits,
|
547 |
+
weight=layer.mlp.down_proj.weight,
|
548 |
+
bias = None,
|
549 |
+
)
|
550 |
+
layer.mlp.up_proj = QLinear(
|
551 |
+
bits=bits,
|
552 |
+
weight=layer.mlp.up_proj.weight,
|
553 |
+
bias = None,
|
554 |
+
)
|
555 |
+
return self
|
556 |
+
|
557 |
+
@torch.no_grad()
|
558 |
+
def chat(self, tokenizer, messages: List[dict], stream=False,
|
559 |
+
generation_config: Optional[GenerationConfig]=None):
|
560 |
+
generation_config = generation_config or self.generation_config
|
561 |
+
input_ids = build_chat_input(self, tokenizer, messages, generation_config.max_new_tokens)
|
562 |
+
if stream:
|
563 |
+
streamer = TextIterStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
564 |
+
Thread(target=self.generate, kwargs=dict(
|
565 |
+
inputs=input_ids, streamer=streamer,
|
566 |
+
generation_config=generation_config,
|
567 |
+
)).start()
|
568 |
+
return streamer
|
569 |
+
else:
|
570 |
+
outputs = self.generate(input_ids, generation_config=generation_config)
|
571 |
+
response = tokenizer.decode(outputs[0][len(input_ids[0]):], skip_special_tokens=True)
|
572 |
+
return response
|
pytorch_model-00001-of-00003.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:99b028dee5b892a9fdb2bb1b03ee50614f32f26c00a4b82af6305c2c4f6d14da
|
3 |
+
size 9972443620
|
pytorch_model-00002-of-00003.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:953a36711f31ff068cd600ae1f74152806affcf32f617b5669e382531ca783b1
|
3 |
+
size 9947419824
|
pytorch_model-00003-of-00003.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:85137388811d9ab10ac6de22832b3e5bfe9d562260bb174175ccfeb23defa23f
|
3 |
+
size 6610363169
|
pytorch_model.bin.index.json
ADDED
@@ -0,0 +1,290 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 26530129920
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "pytorch_model-00003-of-00003.bin",
|
7 |
+
"model.embed_tokens.weight": "pytorch_model-00001-of-00003.bin",
|
8 |
+
"model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
13 |
+
"model.layers.0.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
15 |
+
"model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
16 |
+
"model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
17 |
+
"model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
18 |
+
"model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
19 |
+
"model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
20 |
+
"model.layers.1.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
|
21 |
+
"model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
22 |
+
"model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
23 |
+
"model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
24 |
+
"model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
25 |
+
"model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
26 |
+
"model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
27 |
+
"model.layers.10.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
|
28 |
+
"model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
29 |
+
"model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
30 |
+
"model.layers.11.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
31 |
+
"model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
32 |
+
"model.layers.11.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
33 |
+
"model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
34 |
+
"model.layers.11.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
|
35 |
+
"model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
36 |
+
"model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
37 |
+
"model.layers.12.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
38 |
+
"model.layers.12.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
39 |
+
"model.layers.12.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
40 |
+
"model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
41 |
+
"model.layers.12.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
|
42 |
+
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
43 |
+
"model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
44 |
+
"model.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
45 |
+
"model.layers.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
46 |
+
"model.layers.13.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
47 |
+
"model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
48 |
+
"model.layers.13.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
|
49 |
+
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
50 |
+
"model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
51 |
+
"model.layers.14.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
52 |
+
"model.layers.14.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
53 |
+
"model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
54 |
+
"model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
55 |
+
"model.layers.14.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
|
56 |
+
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
57 |
+
"model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
58 |
+
"model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
59 |
+
"model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
60 |
+
"model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
61 |
+
"model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
62 |
+
"model.layers.15.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
|
63 |
+
"model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
64 |
+
"model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
65 |
+
"model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
66 |
+
"model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
67 |
+
"model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
68 |
+
"model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
69 |
+
"model.layers.16.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
|
70 |
+
"model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
71 |
+
"model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
72 |
+
"model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
73 |
+
"model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
74 |
+
"model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
75 |
+
"model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
76 |
+
"model.layers.17.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
|
77 |
+
"model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
78 |
+
"model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
79 |
+
"model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
80 |
+
"model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
81 |
+
"model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
82 |
+
"model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
83 |
+
"model.layers.18.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
|
84 |
+
"model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
85 |
+
"model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
86 |
+
"model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
87 |
+
"model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
88 |
+
"model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
89 |
+
"model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
90 |
+
"model.layers.19.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
|
91 |
+
"model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
92 |
+
"model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
93 |
+
"model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
94 |
+
"model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
95 |
+
"model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
96 |
+
"model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
97 |
+
"model.layers.2.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
|
98 |
+
"model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
99 |
+
"model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
100 |
+
"model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
101 |
+
"model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
102 |
+
"model.layers.20.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
103 |
+
"model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
104 |
+
"model.layers.20.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
|
105 |
+
"model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
106 |
+
"model.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
107 |
+
"model.layers.21.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
108 |
+
"model.layers.21.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
109 |
+
"model.layers.21.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
110 |
+
"model.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
111 |
+
"model.layers.21.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
|
112 |
+
"model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
113 |
+
"model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
114 |
+
"model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
115 |
+
"model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
116 |
+
"model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
117 |
+
"model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
118 |
+
"model.layers.22.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
|
119 |
+
"model.layers.22.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
120 |
+
"model.layers.23.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
121 |
+
"model.layers.23.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
122 |
+
"model.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
123 |
+
"model.layers.23.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
124 |
+
"model.layers.23.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
125 |
+
"model.layers.23.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
|
126 |
+
"model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
127 |
+
"model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
128 |
+
"model.layers.24.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
129 |
+
"model.layers.24.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
130 |
+
"model.layers.24.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
131 |
+
"model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
132 |
+
"model.layers.24.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
|
133 |
+
"model.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
134 |
+
"model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
135 |
+
"model.layers.25.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
136 |
+
"model.layers.25.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
137 |
+
"model.layers.25.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
138 |
+
"model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
139 |
+
"model.layers.25.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
|
140 |
+
"model.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
141 |
+
"model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
142 |
+
"model.layers.26.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
143 |
+
"model.layers.26.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
144 |
+
"model.layers.26.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
145 |
+
"model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
146 |
+
"model.layers.26.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
|
147 |
+
"model.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
148 |
+
"model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
149 |
+
"model.layers.27.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
150 |
+
"model.layers.27.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
151 |
+
"model.layers.27.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
152 |
+
"model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
153 |
+
"model.layers.27.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
|
154 |
+
"model.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
155 |
+
"model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
156 |
+
"model.layers.28.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
157 |
+
"model.layers.28.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
158 |
+
"model.layers.28.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
159 |
+
"model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
160 |
+
"model.layers.28.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
|
161 |
+
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
162 |
+
"model.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
163 |
+
"model.layers.29.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
164 |
+
"model.layers.29.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
165 |
+
"model.layers.29.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
166 |
+
"model.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
167 |
+
"model.layers.29.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
|
168 |
+
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
169 |
+
"model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
170 |
+
"model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
171 |
+
"model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
172 |
+
"model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
173 |
+
"model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
174 |
+
"model.layers.3.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
|
175 |
+
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
176 |
+
"model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
177 |
+
"model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
178 |
+
"model.layers.30.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
179 |
+
"model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
180 |
+
"model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
181 |
+
"model.layers.30.self_attn.W_pack.weight": "pytorch_model-00002-of-00003.bin",
|
182 |
+
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
183 |
+
"model.layers.31.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
184 |
+
"model.layers.31.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
185 |
+
"model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
186 |
+
"model.layers.31.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
187 |
+
"model.layers.31.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
188 |
+
"model.layers.31.self_attn.W_pack.weight": "pytorch_model-00003-of-00003.bin",
|
189 |
+
"model.layers.31.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
190 |
+
"model.layers.32.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
191 |
+
"model.layers.32.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
192 |
+
"model.layers.32.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
193 |
+
"model.layers.32.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
194 |
+
"model.layers.32.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
195 |
+
"model.layers.32.self_attn.W_pack.weight": "pytorch_model-00003-of-00003.bin",
|
196 |
+
"model.layers.32.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
197 |
+
"model.layers.33.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
198 |
+
"model.layers.33.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
199 |
+
"model.layers.33.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
200 |
+
"model.layers.33.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
201 |
+
"model.layers.33.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
202 |
+
"model.layers.33.self_attn.W_pack.weight": "pytorch_model-00003-of-00003.bin",
|
203 |
+
"model.layers.33.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
204 |
+
"model.layers.34.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
205 |
+
"model.layers.34.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
206 |
+
"model.layers.34.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
207 |
+
"model.layers.34.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
208 |
+
"model.layers.34.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
209 |
+
"model.layers.34.self_attn.W_pack.weight": "pytorch_model-00003-of-00003.bin",
|
210 |
+
"model.layers.34.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
211 |
+
"model.layers.35.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
212 |
+
"model.layers.35.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
213 |
+
"model.layers.35.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
214 |
+
"model.layers.35.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
215 |
+
"model.layers.35.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
216 |
+
"model.layers.35.self_attn.W_pack.weight": "pytorch_model-00003-of-00003.bin",
|
217 |
+
"model.layers.35.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
218 |
+
"model.layers.36.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
219 |
+
"model.layers.36.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
220 |
+
"model.layers.36.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
221 |
+
"model.layers.36.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
222 |
+
"model.layers.36.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
223 |
+
"model.layers.36.self_attn.W_pack.weight": "pytorch_model-00003-of-00003.bin",
|
224 |
+
"model.layers.36.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
225 |
+
"model.layers.37.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
226 |
+
"model.layers.37.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
227 |
+
"model.layers.37.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
228 |
+
"model.layers.37.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
229 |
+
"model.layers.37.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
230 |
+
"model.layers.37.self_attn.W_pack.weight": "pytorch_model-00003-of-00003.bin",
|
231 |
+
"model.layers.37.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
232 |
+
"model.layers.38.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
233 |
+
"model.layers.38.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
234 |
+
"model.layers.38.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
235 |
+
"model.layers.38.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
236 |
+
"model.layers.38.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
237 |
+
"model.layers.38.self_attn.W_pack.weight": "pytorch_model-00003-of-00003.bin",
|
238 |
+
"model.layers.38.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
239 |
+
"model.layers.39.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
240 |
+
"model.layers.39.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
241 |
+
"model.layers.39.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
242 |
+
"model.layers.39.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
243 |
+
"model.layers.39.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
244 |
+
"model.layers.39.self_attn.W_pack.weight": "pytorch_model-00003-of-00003.bin",
|
245 |
+
"model.layers.39.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
246 |
+
"model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
247 |
+
"model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
248 |
+
"model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
249 |
+
"model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
250 |
+
"model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
251 |
+
"model.layers.4.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
|
252 |
+
"model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
253 |
+
"model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
254 |
+
"model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
255 |
+
"model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
256 |
+
"model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
257 |
+
"model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
258 |
+
"model.layers.5.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
|
259 |
+
"model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
260 |
+
"model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
261 |
+
"model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
262 |
+
"model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
263 |
+
"model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
264 |
+
"model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
265 |
+
"model.layers.6.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
|
266 |
+
"model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
267 |
+
"model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
268 |
+
"model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
269 |
+
"model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
270 |
+
"model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
271 |
+
"model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
272 |
+
"model.layers.7.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
|
273 |
+
"model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
274 |
+
"model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
275 |
+
"model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
276 |
+
"model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
277 |
+
"model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
278 |
+
"model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
279 |
+
"model.layers.8.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
|
280 |
+
"model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
281 |
+
"model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
282 |
+
"model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
283 |
+
"model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
284 |
+
"model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
285 |
+
"model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
286 |
+
"model.layers.9.self_attn.W_pack.weight": "pytorch_model-00001-of-00003.bin",
|
287 |
+
"model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
288 |
+
"model.norm.weight": "pytorch_model-00003-of-00003.bin"
|
289 |
+
}
|
290 |
+
}
|
quantizer.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023, Baichuan Intelligent Technology. All rights reserved.
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from typing import List
|
5 |
+
import bz2
|
6 |
+
import base64
|
7 |
+
import ctypes
|
8 |
+
from transformers.utils import logging
|
9 |
+
logger = logging.get_logger(__name__)
|
10 |
+
|
11 |
+
try:
|
12 |
+
from cpm_kernels.kernels.base import LazyKernelCModule, KernelFunction, round_up
|
13 |
+
|
14 |
+
class Kernel:
|
15 |
+
def __init__(self, code: bytes, function_names: List[str]):
|
16 |
+
self.code = code
|
17 |
+
self._function_names = function_names
|
18 |
+
self._cmodule = LazyKernelCModule(self.code)
|
19 |
+
|
20 |
+
for name in self._function_names:
|
21 |
+
setattr(self, name, KernelFunction(self._cmodule, name))
|
22 |
+
quantization_code = "QlpoOTFBWSZTWX/mUzwAK6f///////////////////////////////7f////////////4C5duvi2D0Oj1ppVCJ2zQFYbnbsxmq20pAC7kEDb3Z3nWrextY9NZbavON7nveSRqszudmzAGGgkeh0Pewk881e3Tz13kW9YO7uA9AUUiAWLNW2HHWCE005Mdz3jHs1Ic7QNCQBNGgmE000DRNoGjUYmA0mEmJjIaI9JtT0JoaaMTaQ0aMjTTI1TzKMmETwyaJ6k8p4Ke1T0wk2aE0anpPSHppqNM1HqYzVGj0MpsTTUGpoCAAEyAAAmhpPSYowMk9U8mqb0mJtU8ETwCZT1DQ9R5R6htE9TTyRptQeoyHqA0B6g9T1AD1HpGQGgD1A0NPUAAAA0A1Mg00gmhKPU9E2SekHoJ5QHlNDEPUeoDEaBkAHqBoABoNABoAaGgBoAAAAAAA0AAAAAAAAEmoiIgmiD0maRip+qfpR+k9U/QKaZPUepiGeST1HqeU9TQ9JoANAMhoZPU0AAYnqaBoAANABoAAAADQGgAAADTQ0IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASJEE0AJo0GkxGJoZNKeBoTCnpNNpU9knqn+ppmUnom1PKZqTaaTTwTTFPNJ6pj1BG0eoaMgwQGkYAGk2gjT0jBqaY0RoDeqZoNEYT1NpsA/+iBrt+OVIiCKqfH7N/e67XZ2Dx9tPHyWbW4gAENNTtyzk+/WdoU604SoXU0JgfqgQxVmzbfdmaFcVxQAYINDyjTKU1FCUUzUuqqptg4SBgwIAHYE4NwQOrbY1bOF26LUVuxYr3Hp4paZXaqKU1UmXO3K+IXn2hURrgAegAaTANS+QBclUN6tpvhn85+uTPCLxzj34YO8MIMg45eRAEy9IYbKxeZTRnTy6GpPLtVGWKKK6iuDLa9wjtSmUQREX6wHfE3JeTVZdoj4Hg/3cHlBdw4c4BdGvigzZsubPr3eTi2hs6tZz3J9zUVm8qH+FPwSx4Tdr6by/OA88iLHk34rWNt7fT7NwqqqqqqqrGMYxjFcdqvY2mXyh42c2ccxhtyvBHojjUlyAKRgbvAB6nhls1wGLTOrfGMBsqRXl9Bl3sOlvafSA7sDrmAQI+mw90af+bvJ8mwjP+RKtjobGNzbfl76iTHMiIIUf9oIoygqSG2NLn0Ys/mZ+hzufu7epmzbvP1t7S0Xo8TKK7q6G5MA8vTgBb7Bf/2kITSLsH7Xmfydz7ahAt4YJbBuAQJI+1M8DLJCQH+UPbv212QWIhcCKhBrR2eryfQYIiIhKE0WtbOQ7OwM7OxtURGbF28NBndi9ejVDVA3dne37uDdzrwINS+O/0AzQTCgUjfCAwkkKFMT4Kr0aV3DicVAelGBesGYoCRcLKq5iBFR6SzOzrAwFWDFVYU2XT1oFaRJk2JBDOwVk1LFZZfwY7tQBYMGdECFA1cLZAg0IlfCTCMgZ4afRQBNvXSuMORVUTxTLSTgMFoUtaGLIr524yIM+INSFFIOHQ4TG5NZbd3Su3Nu9raSLd/ueibSYpAL0D42ZkAtD0pnXrfTxYPBw+mAt1cKPCPmDNMCDYCBiQwmANVhdDjBwsdIKyfH1slCvWbJC4QO8SBxi6A+GEpDBN6UQnPaEvBqFk3TwChKSowEENpyAueDIFs6OxxLRmFSUFpjWgYpECgDgfVBJjhg4GGcI9CD0S3igCrdziS3ZoYHlQE+7AELdvbebTVsdRvrPHCgiAbSYzUN0z0SCshLjaUaREEREQQRHNKAgAS9o0kukdJx0ulaJk0kINzlUYN0wWXLLsmRgSG1BEJNh5sCuVtIybGlKUW29BziJUTpqcA8UCCLtOGU0hH17BYTERfPKhCAwxJqSSSMd+umawlsykXZiKHesslqlVDKEHPzFhIWwJHTfcYCGE9dQK9sKixjNifLkW1iLnyZo57BBx2jksXPYjcaA6Z6rlYTl9ocZHn2URKVXnY/Wsrc5l3aym6Uq7u9eu2szSbJgwhqPqfOR1JCCZl7/AehLVBSIXc9npUk8IDzrRCS9XKMeamSDmFxK6OQDhwNnxubbnQygQb4DEL6oD5qkkG6F03dyDAUJB/awNUoDCa3CmYy2QIsK0Z46BoX1N4kY8aGNFB8WZAfWvaHeUT4gYIjEsZBBARIFAk2jCTxAmpW03GtdW4WCN0bLJiiqY3ixmHAWRqqQKqgS2hlf8mwszkhUy3LDx3GLdo5AHGAgC4BogUAVgH4QM0AGAImwbS6gwANIep0rJIU3hBgaeKAEcnzfs+g/sJZnETvInDcAH5fE7azmr8EyIFx77caxbrDBC64CEU8wCqzAHPgkk4kiPREKYHn2HaoDBWCCrFBrhR+XpeNQkdbzCBHee2hW8EW373k/qd/PxGC2R+IO4vmNEAl1AE0l4bEvmnfd5/JYs5gl9XpgQIS7g/LAK7owBwgso9j0yEB9MRIBjqmkLdG5uED3tICA6PYXe4WItRawAenfJ0lCFupoGvajxuQC/5YQPnwFpgQBMNgBndpgVNJcyw+5vCJgHtWU0EDYk2HsvD8Qkg6ANAd8UQXGH/3X3gXgNDefHyaQ/wd93Xx87hWWtW0kPCQGR+KYiPeMQse27PdNLGwhlz8WJObSnEQyHJw1JmStJXTtIg0ZKEHrLZCXd1ljLGkkxtpsDofXUiBH0LLEM43kb2waJ26KZsJ9sBbxcAqzUgWxzogNFm4vSxjMR58r5Xm8H2+6ItGcNX2AK3GhDIMzSX3YyFsbNG0u0MxvZzGFv19k2E45tXrK+1OKUYRiH2OT2Fs7kqtxMDrANVp2nxreAZg02UaFEsuf6+urQi1PxvNOhuacrStndOnonV3e5Du+Xjp8mjhiHYPNexu7UKSbt0Gs2rPIVVVSFyQ7phtQ0ZOUySoyZA79muzuLBZaLAW20gZIeuJDacErguFE3e70svo0S0mRBMBu33rjqVrNEN9A5PHvOgukEPEgb0tYAMrvcvIXB5ydzJHXQ1n+t7BUI24oJtSCTAUet75rBpXL4ylQ4LGBpbQeQCiOku+8rq90o18ga4WEGBDhvHB0YYd/CDLIMdDh2cO/i/RppcEi3Zd+CCU8OdxAAiOgi5qeghJkUnO6YGZi5LEilo2WhSiEVsU2IK7unV2rXG61Q/LbUqGx72rn2Uzx/q/fzsCWUFCQyAA+XqfGVGvL1kml0MVpjJl1A9vYoYTSatnV1+z2czsdoc4QFWLILHn1S71/r3V1S/fJMgDlXX6DVv8+FeECNi1u8zf8K8r1Khq7twFu5xPfZJT+PLpYUZWgGNDG0Jlq4rsQy86u95xqTdO0TbSGBdDOUSyyGHQAmP5mgNfVvgeY2tPzlKbyrvnaZhgQ7aWeJjzbF4mjPlro1hYjmnWUshKxVsQ6pveK850taANOgIE/aJvr0IAC0g2H2d1agVwnBkAF1kl7IPZc8mBthvlYish4AqABgI9hw2cExRabO+8Xz31+enwlCxSbnfVFlqig3UKGBQiybpEBGQLIxuoUMVYLTt53sY+lPlxSAq9f3lfnVlFmiBFrOhAeAF/0/N6HI6/+rsQ2+D5U5fenadDmtFFgeZLLESwOgWWIlgWFo+uFROhke3lKQ4bf0mLH3XSOgtDGd73hfMwDM2aF7Lonl7AlbiPbV2zY2lvu1Vj7jzlmFYoKieH93wt3fLhBXgYUGJEjga5YWEVyE00qIYWXSKd0ZaZy+vuCQlhaz5ELs9n/pjuFAHpoDCMEEtseECQF+Rk58EyW3nzCdlyCeY5WPItdkDZ4egXmjfZTLSVT29ku6KCGxHbdTBD3z52SxkuXkpoaHyy3t25+JwX5zFdYawDASl7397IB2tunNbt2FygaTBIO5qrG0asQmxEVRGCn26UX6DewTmic/QqkLZjdCTqjQDGlxy4IODucyQlmE0zkwSkR02cZjZcA1MzMczZAf1hfPnZT1IGtWIJGOcpzgYwCGyiNtoxRkupRElCCAgWJcE4igRJEQogPHYVAVBAEYDBkUEBIOSMK3KJNwQllpqWZARLCgMM8TkQoHOSZTDbSrjS6QtkYsQSloWSmQ4BlMjEJuuWh0ERMIVRLbcNDDQalLRQiEoBIUKZaiQpZQ1KoooVlNtjVVGAsG6WkNS84MJcoYIgjBrKaODOaUZG6QUZlCUGKy25MUVYGMWC+95zG4FRE0iyDRISulc0GQJt6m5u8WSQD4NAiDAMD9y0Q4TBGAaAIGe6PfdX9zl9Xginufp+HmPiAGfY8ZoDAarMoQAD9kA2OUJQV3lBq86RzpT8nbXPtqxsvN4YTDyOQgGEarV4Tc5h1yv2Npz+65PJpxO/Tefe5S5U1n8asAC3AQIACrUA5XacxgALbHvUfi9ApR956Do3PCWymCzTo7JjufU9DsGcQWqAFwwZfDzR+m6436pzvncYkARkLKOxX23RuLsQeK067Y/Fq8tB7igBMvb836/03fkV4qZ5YY4pFxADLifQb2iaUAwjesDs8Nhx5vnIw3rZOyb9+jyaYazgr2vbSKuf82URMcyf+99L2sWJHqW/I0PfaMR0KsULcnf9Lx/fJFzattuUwcjv8vdJed+FY1s49FrvJMbRVa82imzbdgSpDhEtleDphWrjgzVu59jsXKG/3f88zolkjqRQUk+Xm8F72190OzfqwfT5XAYbvq8WBzq/B+4rLP8j5PDfiytkicVOAAJ6QOe+hWqqwgfq61qtJ7jrsz89u1dDqsK/9Wur9Po5K1vHsXseRHoyF+LoewZ3uHaanw5S9LCW9Gj8k3e5ObY3NfjabO0cbzotaAPB3XIg+av5zaHst8ijMqapTpVtdwy211QZINMi1UCIHnAB3ZLFDZQuraVlNALggow5ygAhEo9EDHUCSm8+Hhev7eTufm8onZ7pATIUwBEBBUUEPBw/zcrl+pwtDJe2XApoPk8CJjTqtqbv7DYwZWFs/M8EhDcYE8AK8A+GfX/aQkYgSLdftV0Id/5gf3lOuNNC0799E3uYYtpMg6yABaJz5en+HpUfveNBXeYA8Whj8TtZK60F8V863ndv3PwKagCzpXtfv1APjaUgxkGLtptiZPR9vldS2Bfy0pT3RXWJlLCCj+GpAz28S4v0YQrYE7We9WpbVXz7KVTWEtoXM/UPZhYnpzdeokWJdNHQ6JQLxp7bOfci50rBcdOdhOqmyeC7B2rL6rxd969Xxc9L4zMrsqZ0+DoaPeSn8Y5QMLTOLpdvz1qaOO5xT1xPjgKnhTYa5pzi5U+bDcHXzYdxpgAbbhf/e8aBprxka5aM2J3lYXBG5G/r7CunzcPyjz2o79z8eDKkMvdO9WixswXLu3TkpoYcV0465fwUxoxC6L9Zwc+QsLDfqipk3wMSSRkBPM8Bxrwt0Mjr4IWW9Tw+Kw23yTbUyYJqrgNaq7saBKAdzYXMQ6mkrfqt72Lk0YwiZmIKkXUgChISCZMMrwdnjWbJDoR5ZXGxxAX5uRBfHBOk6JS8VVVWd56zxf8v3uR0/zON57e6BDuqIcQDJ7H0q5BNPaWbExYw2Bj4tRM9kB+JfynyyEfR/7ZiPXRFLmwpGGjLF9G6/J65mkUZEaKrUdBZYUxFKqGJL4LAbEfZjLi4GYXhv+x3ZpHkC3YADdMsKeYmfKgtzUd+Y7dVngbdcEFGAL3VqaYfYAYMtY3YKIQumTVXUFTFQyU0bqIeMgV2WOcZFXICpoMvueYVy0mHAiaeyNg1p5/QmSbYgyb7WQdUPfY3QeKc0hewGB2z2vH9t+pvy7B6P21pG+wXCMQHZl30TJonLPhQg8nka+raw1OLPUVWvIidrloKjcLH6/YAwepAoWEykQ9Bw2+YU/N5dbXnsNcPbubOszstYSwQYATYulLN0AHAgwb5t+VfATV6uhICgRgDGUaoVNNLc9ZMMW5+qKVhOyoRMLzJolo17ACLDPes+aoyeD5aIZm46HHKV7KqGX1IGbYEEDaAh0Vj+43wIMep+e+gsP4UEgVjmMAWTPz2XZhQDA6/Vzbk0fK+v0+bNB12LRbfmsufKzRgw7Hp7b+J+N2LqWXdwWTvhQ2rIPjc2cgS2A4Ub7IflPitJFAPyFvbvHK+tXi0Zcbi6mO6HTaIydOeYDmSYUIACAZwJCEgueoJnU7W6WfGdWtl1TdD4WHQ8AgDnmNUD+2YrjxNum3+1R9B+XSiSGrVLcFrVC/Z9R7D8DslIGyMPXbJAFthAMNYs7OdlqPilZtnwtReItC2Ff5vD8mQHwayX/vh1LB+HwoefoZ6LWUKb7WH6D0FmEhEKgwAayAYsoKUCcPepjDQYfA2TMWHoiS1lspYmEi2HdFULic/ucQlrFCCwPxyDeITAUsiAUFggCtZuDuVPLvVtM4WCG6DlrLwBL1JAaQFWuf7/uHZ1WAHEBuz9BMrshS8OhZpwrmYpgUIFoauEJQxtrw2iu9bT1ZLik/F26jhZblz7739qomvexIWc5hKq/GfFAebrnq/23mGuisbZhiROtNdFBDwqCBc2zrTYMfhMPwIF0s37CzzvYKeLjIfQZ3D2N6o+FRgDOkDGFGjCDiy9cJBVMOBWJ1AjDIxTAz/LwSRYuyzhHyDiECf0P53hWshYcMslf0PC0tWfLlUztN1xTxhwgkAudx+IE+NuS3phgEhRBo5lXEG6KhGydUzSU2WphfuFy0VkjH2AIPddbJ679s70tkL1rBEEEEmFgwK5pRCB6ZC5EX7ZCkCTI1pQUDJAwhQoosjBZFAjelFmydnwH9j46Ei5DD9ZaOvgT54UpSh4mD7FR2rjbJjFFdyOauUAjNr/DYBQJkLsUsd2mAXDIMHOuu8ULJhkx21G0UL7fnlqIPfiwdblRpcEaxVjru+6bHpdvj38qAOr1rUACbHrKGDWLFjGCBGYoGREGZBh4aGauRARRTmJdfJBWYoCDdFrBtCgYo6H8NyRIvFfbeTFjxF9riIiIiJABkRljjGMYx1mizcSoJ9AAFqKHXgBBgYnYjs06fFb2fl/bceQ8TeN4h1jrKPd/Pbtl3dl3fnbu7u7u7u7u7u7u7u7u79ZxeoA2gbgjyqd70779v47Lsepzo6y18vJkhQMaDKDNhYbWPpJA6hsD3pzguE4gtOhzrtDoDA3oMbPVBY/3fi0DbkWt7GQwMw2BtpNpeKt+v6KytGxxqCQ8JoLCGKIALFxqwIOeI7fqckjnW8eHjcW3xehEp2SWhvmrtDDdoBSOn6jSjQCgLuhd+EBOwr3q9GbUewJDA4QvH+DpFwt+JbtP30yJTy10KFMLT8MmAGUKkqn3DQHSmTACxjEheIpDhGuZT/WrsHgP+ly7Bsto8UYb2bBvwPRV1O/WaEbmIEMEbQtfphLgUDADF7nayfXs1CXBxYOi1aG36B7rr5EX31tzoym2bTIWw0maxvM3Gs+KAOSMztimS4oGQokBRf5dGKNykDp8tH9chWc9k7/6I+SxG5cZSnx52CFhoDqaZ8wBethxjRVKaRfCZTeBpi6ZNdZFjROy9x6tdgMem0rtuH6wbAz9tKvlhJ0JUP1e+2xVgroJFw8tQxLPdwVnLVMDu+mmfk9b5mK3qMNwiMyBqFaajMIgCDBYUXbdKwwVVhoMXL5YLkI5FFviIkYQTNamuapRILAqCSAYSsIOOVAtAUUrDwBSthRBgyVAM1wBrIQhhTlJKQIwFnj+b+aXuJyerhwx7HxQLofddtH71c6UuefecFIrANhfgkaIt5KL4iV43tMeP17BD8D7Dl8+AQTGQfz/rp3JWOfDodJOcvDAquYl1QQiHknUmAQ3lYpRUtJEUowXnnJnOZjZzdINlj+y7lXBb2uPR6a2E5AC3S6dBaJxYl1qyRXwQ15QflVkAK8AmAwql/n4frTztb/XRXV9J3eXRfv0MuB1OShRrtbrfdudwKxsAYC+QHiNISbAQu46ffUU/Flrw68uJ5L+7p69JjfglHs5PSd0bjADZeFsIWCqy0kQ20m3CskYLPShb0aoDdHoJBUQVEirAUgeRTtUBwAa0INXTIBPMHp9AongtXzSfuWCFQfDtzRuYRVG3WIXUjEg7b2vBZKT4ESq2tTcMyGXlqZN+uJ3CaGHEJB/3Q6/xrGIGIxyzCG5tLlSXx61sy0Bra4IFaYrjF1zJj5JPK/SslbN65uYffnqtyIX9zren+rrSsXVVhq8VZ6DFpnBVlD48AoMeltsyGSZSpdUjR6bM9J+oHRVmhpp2HBv+N4PXeS76ctP4LOLvreBzzyCr2v1K7eBo+dr2gwZ2x9k6EpHd7pNRl6Pv+IgXtj4WmtlEUQxkzWOVcT6jcLrhax5PVvgurz9q7DtdWriVdnpnTlTrQqdvWN6ZNr4OdpMM/T5Gg8irLXS/YOgvhteS49VEj8+IfNiPOf8MfMkUw+lYehdNxKZnNbjIoJiqRY1KVGIOWpRtq4m6GCyiypZKKzWBQq5j8RYJE0NCiyjJmgUmDBi8BoJgMVJYXMF4aGDL2XQ4HDKaRGaGhctNBrShK0bSU1BpFoRaTkkCCUWaDCx1MUXQCaGRhgoqhCHmzrFyZwUFG27KVdmNgbChCbZNAMghZRoXKM0CMEXaUTZswtBpLoCkxONrpa2wL0qn0mw2eV0yXs1MGgGSTcAo/GELIbpoe+8gKSqpV0ZIoIa4UCcM2EdVikuAPuDlU89YsXrb9Zb+Pr/F8NexBBbEwTQs9HmsQGBYPoK6bZKDvj9yyALrlOaMbLpKxRM+njvB4id/1Y1WPm3K2A0BVSlgWJNjYxne6JZ8mZfv7w1Nm3/GFOiwonktduZaRH2loGGhNBUlQiHENkybM8pBim0iaXcpE8dAF4GodlriMfOGH6hHY20huVvSlLDBRKHQ4Y3SyKrmCcy7ZZMDyNqVWWwpS+RHQaYnmEURGCKmQc8ARghpQffVMwK2vz6V97O+59X5foz4jUfN33Z49cKeKObXDE1rNvV2QaDOLOi+R0fl+RM8jVQ7QgNiDMzMgUCLlYO71Vn7X7vF0UcSZX1pu+s+xC4MZXNQCl0/rb68aAY3rOJ/jaw7EOYIIlln6V+oFpwZLOUjUVHfe6pdjXgAqsD219Ri16edZ03hcjePW71C29Wy0nTw5YIfs/Y9sNovb+v8vA1P7beB5bQmvEv59b+BnUs8yqQ5/cLKV0EZRMOGHmpsMrPidWDXTyP3fuO+w/9+kbujeEbdg+n4WXJQBn1kL3Py/M1JnkOu70oufaRPG6bsd6SUhq1TALBZAhKpoyMIvkQGRAzJD+udGR9e+WlVzjlJeqELl+D2smL4vG6BUFpiKHDwqftFBbX+9VV338vNg+5kL11bd1yrZaYZrGW36mrUIRi/MVgrNNITCj++zpFSOrRLE+Prlr3mYOP1TtXvtpOwLP5Kmt+3zZvXSsOXW+ix6mXS5mb1MnTvW0u8yHF356RuzXUyeGiLTe+IvXvKmJrEymIxQT9QMSU8WTHgnJi1BgP/WoqICgO21v9Hiw8IaXJY1619oEj/3cb/7R/nddLm6VA5xoN0t3XY6Hiep4VGnzs/Od0hj8f39YuAC5HvfwvWuOeV5fz820AAGglyrLFDjUrv//M/fwNdsEvj0MrTXrV8vLZfMvKMAzJ0/Sda/28/N0QniGmKhoagYUYMGp8IFDrOoi40L48r/SLxfSSDw9TM4P4vUeHE+iTmchyj7Vmwp7m7dejVSNZx+2Is5jzuf+HmHr2aml3fWein0wnXnxne72A86Cc3hrzXgbfc7lNQiJuGMljn2Y8pgXjrTczIy1teeafy8Tz8vmzBWAAFXfojX/x4Kv/YFNprgURbUBytnsI9/0WeuKmZjrWcumUGQgRDIEUsAwZkQMwPsGTJjpTEw7YAwCs7Oxn2XE+hexXn+z/L7HC65bJhCR3SxMdHngfkGgqJnhYzTGjw9StB6E4VI6SgkdNEdesLFW0cgxeYq7YABEPlMspZSBtZDQYZMvK9Cbu/UzXvja7MLlO4BfVYkMH5dwAfQ3u9WEkCoveLyp86iGmleemxREJQ0NoFyWpMxsNQCuuLGCdP703Uv1a3JeT7vfpxp8J+o/ft+J70dz7dV+1QEcxyT6REE6vsl2+0Yd8ayjKWBg2j8pRTeGhVxiYZDc6/YatrSzsw56wbWzGkp3FLpa8+60pan1LSvb+rcfyjTyEM7yC5BVyZL4r0qVCMZRc+AMHxlyZMP5QQiFATNqpVSdy8i66S7oSIl4APKPMzOTus/KeI8rrY6qBkuRSWT0y7LGvNz4KBjigkR4r0v9/bluxFmxePnvZRhpjgezOiX6bPa5LZkzsaLjmf6NzPP1ZfH9p7j4MsQL0YMETXjeb/5lAYcJWU1RECXppb+33HdO5Etl4xLXPxfV8cGZ43FFYXKVoMFQHssoAIzyiClcZR8W8vqiACqmcw8DAwzLM+FeLFaAYRiJ1DFqKh2Fcs+6Zd6erYKNpF09oZhCZNX4DO1OL94JPGTBXIPMmPjmDb0GlmwFaWG2CUqSjhc20YNd6Wwzu52BklGYvDcMnERi4Yh1wqwcOlqiLatNe4rj8FcXDxqMSsgYP5/FnSoTq2VVKttXQ3Gxq0q0Shp+qCbIAeWxu1Ynpd88H5zJfn/V+v+5/N7nyR7Q+n02bmML7aF1Sg+a32Ud2eQx2a8dQqTABf2SKJgvKADJgAJV8Rd0Wt1oIVj9nr/ZfC7fkbdqnS9R4eIbqH2HVNjOYdggfFeSAHKIkaC5R2rzEzdxs7dDCzizsiB7OluhJplyBBWKXPmS0tsUNnNs2D8zfW/QTSAr0EcsnQ/YPZBD4D0rHa3rkC2DHq+G97XfliTeY63fQow3RQpyKsCFgdUC2sF7aep4TmSDjlnDDpfIUJ3Ne7AMT4D7xpuM+j1hXBxYcyIpO3bvLubMhwY3Lrr6KfLP4PF0tpDjMOew5rBbSSUJPAfRMkDCSBum/B7S97oYaYZS56rtu79Vh408mfXcm6HcL0Qe7fRiqav0GhPcuxMpZIm/WHpICgBUirY8aK56MaW53+L/x+BbXNrjaySqntSLsoHFEiExu5hX7+yaqu7Ss2LrWVpPp9L8fuVDJdVcPqIQRFv/gWlUadkCUYMxFQf26Nlq3czS1/zwLAGILGRazcevp3q9/0O/YUWwXKvQTQghgHliLIIbcY0XxVr/9oV2++gsQ57NkRK084MjYapPJJ6Gd7WONsJRq6iIJo0GH/kO9e74wvERAiMW7UqLI+2obG59Xcazzvdk2UIhBDN4V/KqrwHJ9EpMftxjsugftMee96M9+G1DfnomWt7OmvNC5TP5/Fa50GNfJjieHFJ0mwlIothDYzg3BQyahykpudGZEmgiK9ViiKhI9ypBUuKuau8PitJWe1r0kVIrV4VRDTDa74vSvBytKDcNCzJ66Oq5G+hTTGgbpBMS6pJTOmrIjb0m9HsPvrI3rQhSkRYc1aEmn4+CFS9MpIxTpLccqtp+dpwTDqQfFDvleEeOfwGuSJEiR4QBtGkWjWrKysrJEiRI3Pd252xBk1NTBRRRZZZZZZZZZe4EJvbjqWGaaZgEypipYBc9da7d615Ozv+0TPBMoiPZt+OB7H2evtWBqyXzg9jgyNarCYQHxeABDu8KyT59xFO4fpXed3nMVTnQhwffnGz0DpW+c5RkbdjYgCQgDV6Sk3OZyVhq5u3M66CH4jQq6byDLwIv8D7ipARoPE7/rm7y2+93QALi1QT9F/QCxMDOQkHeUdC+o3NN9GXve/W1Ua/wcVgmxFD1YTuKB+xQIiSdMyXLjSbjWwNfsJH8DqADRWZHIyjHLolbAN4CAMrT3YQqcfwcVf9TtpcgPfzwWRN7XWJzrS1KzOVWXccRQ+9TusY64JEtzfyHJnKixBwcbgCBAgQiIiIiiqp3Pje3Y4/hFGgiIiqrTGMYxtsZSR3dlixYyrLVZTH79fh8yNTc4ezofRU9vjHOIATEYEQNb4IG7bzkD59jIzRNInn9c62cuu1ZkYpfHu7uokt8nd1Hc6ApKjEt2qqbEG2l6oUPERCkrFLjmUay3EPnj2vUe43MqIYdrm3PZT7WrLfnw7y9is1SEtuI3OsO3EW80l8imWVq1Yje2a7qnbRVNK7eZSUzwnE6j9CLm24oqbZ35UTokBKroRjwJNyCBEACLMRjnOy84O5zJREd0g8Xa+y0W7O3tcCI+46EvAjDUyqYnOCQAfEhYjlWVo9HFVl0Fk1g6rWywYXLyW9gmyJHKcFdans6g078Q9ryUjaXacP7/PvwauCguS3VK61FsSTIa5RZd+GJqurSiskfDyz7d0Bd7WxYHfJfTrpTamo87sRYMCEdyYaUdCzhu3027ABTtQCAnwKi9q3KK/rIpk6zEjGHEvADnOwuJ1nOvPr8XZNswFPZ07G/LauwBMG1tOWNT76s7Jw1OxxW1BImaJT6XUIQ/1VPRP6UZLBjAVwit2h7xS6TLbCUnzPvqOrOfrbFh/ZAFnP7jW/zIMkMNMUk5C20iKshen2HLTcv3ge8jBXRbUso7c88qlYXXozqDXWcHg21XXWzupu9YmNN2aY8W/tJ3ru1cs4YtK5b/YBitp4WYoOvZCpCIC0Ju2+xw3MABgLVFBetW9KA2pqTQMLlkKFfMNANN6+JBLD7W6/i0AiMi2fIgslxtlD+bdgBbDk1FxvsbR+npU23xUVtnBjvadzYRwqwnvWSPbrgxgFM01Y2yuGIJh4HBXDlmKSUokWxg39HUAD4u4+D8ivAiXNQkqnkKxTsDkVM+u/s6rx/w/VPZ1yL9nnzJm2YZ9Wl+9izPDiRnfzWU5Eo5duybQnktKu3b+J3pVuuBmmnebBXfiZtkpUjLRKvtuhD3GDAd3t8lPpMQgVQmkICwxxqhUhLQMPWxbwjlswPn5rmN8Fi0j25H0DYQMgIsU4+OvNxfxINfZR+ndisEVJrn6M1cgs+qsqW2AYv5gIBUG2nAI2sRJdPp0pkIFsJQ9DC0Exajuxg+5pGLShRHi9wPxlNGkITynkwYgPc5Bjm1ceZiqsTuXbr2ZrcqBszMKehW3A7cYHig2nqO46ef4275H+NjUxZ7Yxj0XWdJ+CBStOyj3EqZrP6f8049HRTOibY6aHBkysu7Zy/0S6gyH3v1st5NJVth4dqmwuarDr5z62e9OpPUqH6te3WRJmOs5XNggNsBgGGgo4SSlh/wYAXsqj3aHIiODcmQbAbQltCKcIoU5klptJHQ0l2P4Tgjad8WBWp9XyPm/j3QYeU5tV+GSJ4bCaYcK2PA4Spq7rr4bGK2La8fhcB+ZpbeVZdDoKcxwCBZQgvQmADvnSmoonhrOe7esVg+7JS5aUYwMCekjlC6YlQHUxfh1evKIB8OGrutYZ4YX41h6Jq6hHuvnBsJnjhYHY81i95iJiJTU6/T7VS3gB1qH0ACm35YBe58z7ceWShP5goYAvCcHOTphatcimJSi7e8cPtVNlLBeanev47WzlgmaIlrfg8PQALIwuyc+Ce7PTEdI6IMaL62wH5dzYaANEsRgmxYif+uWKupAwqrJ4eXO3BFsHrOiYQRSnB5GwA01qir3ZWamHuBtKIrzLS3by/XYFMY2AJEnhaR7ycHZFV8q2AKplu2J5dsQ24LL0qZisABXaOzHlwBFOQv0vOYWldhDsVt5f3Y4pEAsNwPQChB5QmJB9EYeqbx1Mx3plDVGMY02NMYxjG228wkHXLQBuctwIzDl0DNb2d3Zr2eV57mni8HxuT3pPieEQB9MdPlRq2ASoAJ5D34BKD2+jwhMSM3k9e3pXf6aOC4LK2IgIYJ4xQMEhhPzy+0BRQRAMTrG+uVq2FlPAAWvayCMW6HdOctiAZvYzmADuOlcPkF5QWJAaMRsb5I0Onl1kWwDFstny1tu3cPUt/f34gagGAiIG0z+LwJMwuBjAAO0oXQ+j2OhzkkDWu/H1iOt9LZS2d9xud3NjEIOUBcEGiLbYAIhuk6kG3QiZ7Vx448qOR0823ux6gaDAo/m7VGENCDY55QyihE8PY2c3FAOq0eB5VrR2rVOD8Pk54g10gYFruoShyCA600IlGADNkNWFwSUq26fo1MfJozZb8ivAWwKtUCnsIy1VVc6gilxgZXuOpIn5NqpQ4t1rnTCc+zVGQ8dLhuE4NDF7wA+sXOKNy3yzCWV69Yg3C0AUAEgSDmXcoIVu+dFgcdgdaEhA+iWl1AC/p9ikx5Lmxupjb3zEXwOwav5pXeGFu/i1uQdRtu2CBnIi7j7vIXJ+0+JkKDrtuikSysRrZuAkIPGGIXa2KOvhm+tzKtliPPcIGhgwSePz0mjUO5L7zzmcZMHoTM00cmhmTJXLHXXVL0wJj4s1MzRHFFiZHJnI5xbqYKxtqajjQWsuDBeCnFPf3bjFXVC0XXPfJZnZvcUOvlJ5TfVc9np7+YKcF8Pr101cACqIsDSQrhevDLMRutoELrdyRd4yc4EBhnWVGVUo4LsLWMYimrKjHNShUXacMGzWd1rteL0aqM9Wd9vU8jWwVgD0CDq0ypYdiu5V1wDsEFjDwLXJ6pe46MvOgOONLlAwPQwQmNUX+2AdnCCSJdjtaAefC8AY7bANwtVktFIQWVBQ95dSmjz8VnKFc5xsXgOQl3TQHPvghbPELlyOR3/IjaKbR4oXeqF4EjmEktr0SghMIXS60jhlBQIfEIJnyehMgiETwigxDpiHows1RgnEalhk2EzYwRLmRwajUmIaCFSzCXWStGaaJgaMaFOidK9crUyN2ZuYmDCMxbjQvOVrOaRTDXXVeCjhum+v9g5xzwDtdCQ0k+kA7IgR/IB4DE2B6gEv0Dv6l1YUCwQl4cgIQLDp7+vyQ0Ua6AogR/cA0tRku3sTszsBxdKvDwb0HSuapgWAtRzrmM+GLTWgg8og8IOyt6ZvFLTvQ6TdIU4jAZ9qJLorPPx8ToMIzve9bunjAzUZTwZAuejvlIVhEDGHZ43P+c2vnuH0s6xLjGN5IxE0xoW1w0CkEhDEzZIIIKKKJQkS+HFVRzrtPvD4ASgRgCszCJ7egCW+IZ1AZrFQIbETEL8gYz6s0SYtQwYi6Qsmdq1IQVCNcDQEDNHPNnw9vKmss525+DcQrAWHAQARzWHlAGPJFvL0qtVnM2mDSOxfDb56lUUmGI9SmNfCBxBRJtxwA+2eJCOmpSpXLFbYv8diZyMpTv2LEbyMNcTJr20IxsYzUrvRbyu5dvYHUZsRs8gfCLXUEVYi8a2a9PXF+ZtLPx0ZOLRblX8XTa0QJJSoa+VKRIKD5RCmFKYOIiBoFAUCXYIXCCWZKNExSIoiMUmCpS01EkRLAsoE0NCxCz8oQK0iCYNZrgS0sWA4zJgpKMgxYZxIN0k6OoboxHmMgmKyNy3rUrA2BW11g0yU50ArBdUNYm7rW6l+FmQDmsfUcr8Nxpt6ME1pzmPW2YuvyqQA1FEqGKaOFgPS4YwF0qjqJ96aNghQyxO4ETMPCpx6cPhE1xsRksh7qapVjAG7QQVa6blYCqhJolWKylASeNpfutZRkWEfehrAM1hps1M6VN9y+8pnOeOL3eSrvGKkr3kEDbExtsYADtYMAhLoFzWdZo6F3T89cLurlkYDQ8iWVgjINJHQatNc/BZZPPYhX7J3dX5zJTnZ1pJIV4y+k2MF25BTUhIvz2okmED6ax7KgYdJtMkMMjHiBpMVmJIippQbqyHkJreoQDGrZe8QH4qNpIBqEHFpVTrJVwkLCu5ds3+pbccosPAGFjP4J0AB15EXRr4rcAbXmibqr2600yb4dM8VbMHACFOCBZhZIxpWCMkDUZIBUQoKpooWCkAnBzOK5na/LqSSLTATYIaabQCteZkFlqs0bDPpuWAcNiRn6GWSnwrsatNVFIK0+WUGVX3p1UghXmamW9amFzoPHfP2Z3WLhW9ZEaq0DQiqOJyRC17MYwQA84eUDjyR/GOBNpNoO1pV6NwwsBZoAgBWz+M+YS5GC+Su1IEB0A5in0LwPQxXq7joeDPBdd3DzF6z96RTojxR29u8vE3GnO6jAa0MBmCuoxyYl/SDsbSpYIlMINttOUZndGWJ2JgBs8s7bw1GhnALOxFBnZayRRjt4bSvH+Ma9WNZSaKBoUDtDEQNIMt5XAZJIvEFZSahWUgL7ADIBAjZYJVAK8NHljSCRbLZdxbuCkFfrZVirL+GkBWYaJFCoglTaEWtiguhCVZNjj+c9eMUMbOVJQmcHOmKmRIKboAMkAbohUflNANgubKuhTXDGSlSKY0PetmdL+7bQoIJCVRY+osfasgH1NADQYBBoYd+dccoSIhapDyYkRkhkYGAZDWCMlJReDHnRJZKAxUYiJmPGYriVoGAkdW2QI785BQQakRBFiFEknMOMGpw8jj8a7sLaWrGrZ5gDnB2Ys6AFHfczh5BvVw8R6n1P4QHEbDeIf/i7kinChIP/Mpng="
|
23 |
+
kernels = Kernel(
|
24 |
+
bz2.decompress(base64.b64decode(quantization_code)),
|
25 |
+
[
|
26 |
+
"int4_to_fp16",
|
27 |
+
"fp16_to_int4",
|
28 |
+
"int8_to_fp16",
|
29 |
+
"fp16_to_int8",
|
30 |
+
"int4_to_bf16",
|
31 |
+
"bf16_to_int4",
|
32 |
+
"int8_to_bf16",
|
33 |
+
"bf16_to_int8",
|
34 |
+
],
|
35 |
+
)
|
36 |
+
except Exception as exception:
|
37 |
+
kernels = None
|
38 |
+
logger.warning("Failed to load kernels:" + str(exception))
|
39 |
+
|
40 |
+
def quant4(weight: torch.Tensor, scale: torch.Tensor):
|
41 |
+
stream = torch.cuda.current_stream()
|
42 |
+
num_row = weight.size(0)
|
43 |
+
num_chan_fp16 = weight.size(1)
|
44 |
+
# 4bit
|
45 |
+
num_chan_int = num_chan_fp16 // 8
|
46 |
+
qweight = torch.zeros((num_row, num_chan_int), dtype=torch.int32, device=weight.device)
|
47 |
+
intweight = torch.empty(num_row, num_chan_fp16, dtype = torch.int32)
|
48 |
+
intweight = torch.clip(torch.round(weight.to(scale.dtype) / scale[:, None]),-16, 15).to(dtype=torch.int32)
|
49 |
+
|
50 |
+
for j in range(num_chan_int):
|
51 |
+
qweight[:, j] = ((intweight[:, j*8+7] & 0x0f) << 28) \
|
52 |
+
| ((intweight[:, j*8+6] & 0x0f) << 24) \
|
53 |
+
| ((intweight[:, j*8+5] & 0x0f) << 20) \
|
54 |
+
| ((intweight[:, j*8+4] & 0x0f) << 16) \
|
55 |
+
| ((intweight[:, j*8+3] & 0x0f) << 12) \
|
56 |
+
| ((intweight[:, j*8+2] & 0x0f) << 8) \
|
57 |
+
| ((intweight[:, j*8+1] & 0x0f) << 4) \
|
58 |
+
| ((intweight[:, j*8] & 0x0f))
|
59 |
+
return qweight
|
60 |
+
|
61 |
+
def dequant4(qweight: torch.Tensor, scale: torch.Tensor, input: torch.Tensor):
|
62 |
+
stream = torch.cuda.current_stream()
|
63 |
+
num_row = qweight.size(0)
|
64 |
+
num_chan_int = qweight.size(1)
|
65 |
+
# 4bit
|
66 |
+
num_chan_fp16 = num_chan_int * 8
|
67 |
+
|
68 |
+
out = torch.empty((num_row, num_chan_fp16), dtype=input.dtype, device=qweight.device)
|
69 |
+
|
70 |
+
blockDim = (128, 1, 1)
|
71 |
+
gridDim = ((num_chan_int + blockDim[0] - 1) // blockDim[0], num_row, 1)
|
72 |
+
if input.dtype == torch.bfloat16:
|
73 |
+
kernels.int4_to_bf16(
|
74 |
+
gridDim,
|
75 |
+
blockDim,
|
76 |
+
0,
|
77 |
+
stream,
|
78 |
+
[ctypes.c_void_p(out.data_ptr()), ctypes.c_void_p(qweight.data_ptr()),
|
79 |
+
ctypes.c_void_p(scale.data_ptr()), ctypes.c_int32(num_row), ctypes.c_int32(num_chan_int), ctypes.c_int32(num_chan_fp16)],
|
80 |
+
)
|
81 |
+
elif input.dtype == torch.float16:
|
82 |
+
kernels.int4_to_fp16(
|
83 |
+
gridDim,
|
84 |
+
blockDim,
|
85 |
+
0,
|
86 |
+
stream,
|
87 |
+
[ctypes.c_void_p(out.data_ptr()), ctypes.c_void_p(qweight.data_ptr()),
|
88 |
+
ctypes.c_void_p(scale.data_ptr()), ctypes.c_int32(num_row), ctypes.c_int32(num_chan_int), ctypes.c_int32(num_chan_fp16)],
|
89 |
+
)
|
90 |
+
return out
|
91 |
+
|
92 |
+
class QLinear(torch.nn.Module):
|
93 |
+
def __init__(self, bits: int, weight: torch.Tensor, bias=None):
|
94 |
+
super().__init__()
|
95 |
+
self.quant_bits = bits
|
96 |
+
self.scale = weight.abs().max(dim=-1).values / ((2 ** (bits - 1)) - 1)
|
97 |
+
self.scale = self.scale.to(torch.float32)
|
98 |
+
if self.quant_bits == 4:
|
99 |
+
self.weight = quant4(weight, self.scale)
|
100 |
+
elif self.quant_bits == 8:
|
101 |
+
self.weight = torch.round(weight.to(self.scale.dtype) / self.scale[:, None]).to(torch.int8)
|
102 |
+
if self.quant_bits == 8:
|
103 |
+
self.weight = self.weight.T
|
104 |
+
self.bias = None
|
105 |
+
|
106 |
+
def forward(self, input):
|
107 |
+
if self.quant_bits == 4:
|
108 |
+
assert(input.dtype == torch.bfloat16 or input.dtype == torch.float16)
|
109 |
+
|
110 |
+
if self.weight.device != input.device:
|
111 |
+
self.weight = self.weight.to(input.device)
|
112 |
+
self.scale = self.scale.to(input.device)
|
113 |
+
|
114 |
+
if self.quant_bits == 4:
|
115 |
+
self.scale = self.scale.to(input.dtype)
|
116 |
+
rweight = dequant4(self.weight, self.scale, input).T
|
117 |
+
output = torch.matmul(input, rweight)
|
118 |
+
elif self.quant_bits == 8:
|
119 |
+
rweight = self.weight.to(input.dtype) * self.scale.to(input.dtype)
|
120 |
+
output = torch.matmul(input, rweight)
|
121 |
+
if self.bias is not None:
|
122 |
+
output = output + self.bias
|
123 |
+
return output
|
special_tokens_map.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|inner_thoughts|>",
|
4 |
+
"<|system|>",
|
5 |
+
"<|assistant|>",
|
6 |
+
"<|prefix_begin|>",
|
7 |
+
"<|prefix_end|>",
|
8 |
+
"<eot>",
|
9 |
+
"<|prompter|>"
|
10 |
+
],
|
11 |
+
"bos_token": {
|
12 |
+
"content": "<s>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": true,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": true
|
17 |
+
},
|
18 |
+
"eos_token": "</s>",
|
19 |
+
"pad_token": "</s>",
|
20 |
+
"sep_token": "<s>",
|
21 |
+
"unk_token": {
|
22 |
+
"content": "<unk>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": true,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": true
|
27 |
+
}
|
28 |
+
}
|
tokenization_baichuan.py
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023, Baichuan Intelligent Technology. All rights reserved.
|
2 |
+
|
3 |
+
import os
|
4 |
+
from shutil import copyfile
|
5 |
+
from typing import Any, Dict, List, Optional, Tuple
|
6 |
+
|
7 |
+
import sentencepiece as spm
|
8 |
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
9 |
+
from transformers.utils import logging
|
10 |
+
|
11 |
+
|
12 |
+
logger = logging.get_logger(__name__)
|
13 |
+
|
14 |
+
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
|
15 |
+
|
16 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
17 |
+
"vocab_file": {},
|
18 |
+
"tokenizer_file": {},
|
19 |
+
}
|
20 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {}
|
21 |
+
|
22 |
+
|
23 |
+
class BaichuanTokenizer(PreTrainedTokenizer):
|
24 |
+
"""
|
25 |
+
Construct a Baichuan tokenizer. Based on byte-level Byte-Pair-Encoding.
|
26 |
+
|
27 |
+
Args:
|
28 |
+
vocab_file (`str`):
|
29 |
+
Path to the vocabulary file.
|
30 |
+
"""
|
31 |
+
|
32 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
33 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
34 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
35 |
+
model_input_names = ["input_ids", "attention_mask"]
|
36 |
+
|
37 |
+
def __init__(
|
38 |
+
self,
|
39 |
+
vocab_file,
|
40 |
+
unk_token="<unk>",
|
41 |
+
bos_token="<s>",
|
42 |
+
eos_token="</s>",
|
43 |
+
pad_token=None,
|
44 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
45 |
+
add_bos_token=True,
|
46 |
+
add_eos_token=False,
|
47 |
+
clean_up_tokenization_spaces=False,
|
48 |
+
**kwargs,
|
49 |
+
):
|
50 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
51 |
+
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
|
52 |
+
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
|
53 |
+
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
|
54 |
+
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
|
55 |
+
super().__init__(
|
56 |
+
bos_token=bos_token,
|
57 |
+
eos_token=eos_token,
|
58 |
+
unk_token=unk_token,
|
59 |
+
pad_token=pad_token,
|
60 |
+
add_bos_token=add_bos_token,
|
61 |
+
add_eos_token=add_eos_token,
|
62 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
63 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
64 |
+
**kwargs,
|
65 |
+
)
|
66 |
+
self.vocab_file = vocab_file
|
67 |
+
self.add_bos_token = add_bos_token
|
68 |
+
self.add_eos_token = add_eos_token
|
69 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
70 |
+
self.sp_model.Load(vocab_file)
|
71 |
+
|
72 |
+
def __getstate__(self):
|
73 |
+
state = self.__dict__.copy()
|
74 |
+
state["sp_model"] = None
|
75 |
+
return state
|
76 |
+
|
77 |
+
def __setstate__(self, d):
|
78 |
+
self.__dict__ = d
|
79 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
80 |
+
self.sp_model.Load(self.vocab_file)
|
81 |
+
|
82 |
+
@property
|
83 |
+
def vocab_size(self):
|
84 |
+
"""Returns vocab size"""
|
85 |
+
return self.sp_model.get_piece_size()
|
86 |
+
|
87 |
+
def get_vocab(self):
|
88 |
+
"""Returns vocab as a dict"""
|
89 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
90 |
+
vocab.update(self.added_tokens_encoder)
|
91 |
+
return vocab
|
92 |
+
|
93 |
+
def _tokenize(self, text):
|
94 |
+
"""Returns a tokenized string."""
|
95 |
+
return self.sp_model.encode(text, out_type=str)
|
96 |
+
|
97 |
+
def _convert_token_to_id(self, token):
|
98 |
+
"""Converts a token (str) in an id using the vocab."""
|
99 |
+
return self.sp_model.piece_to_id(token)
|
100 |
+
|
101 |
+
def _convert_id_to_token(self, index):
|
102 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
103 |
+
token = self.sp_model.IdToPiece(index)
|
104 |
+
return token
|
105 |
+
|
106 |
+
def convert_tokens_to_string(self, tokens):
|
107 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
108 |
+
current_sub_tokens = []
|
109 |
+
out_string = ""
|
110 |
+
prev_is_special = False
|
111 |
+
for i, token in enumerate(tokens):
|
112 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
113 |
+
if token in self.all_special_tokens:
|
114 |
+
if not prev_is_special and i != 0:
|
115 |
+
out_string += " "
|
116 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
117 |
+
prev_is_special = True
|
118 |
+
current_sub_tokens = []
|
119 |
+
else:
|
120 |
+
current_sub_tokens.append(token)
|
121 |
+
prev_is_special = False
|
122 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
123 |
+
return out_string
|
124 |
+
|
125 |
+
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
126 |
+
"""
|
127 |
+
Save the vocabulary and special tokens file to a directory.
|
128 |
+
|
129 |
+
Args:
|
130 |
+
save_directory (`str`):
|
131 |
+
The directory in which to save the vocabulary.
|
132 |
+
|
133 |
+
Returns:
|
134 |
+
`Tuple(str)`: Paths to the files saved.
|
135 |
+
"""
|
136 |
+
if not os.path.isdir(save_directory):
|
137 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
138 |
+
return
|
139 |
+
out_vocab_file = os.path.join(
|
140 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
141 |
+
)
|
142 |
+
|
143 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
144 |
+
copyfile(self.vocab_file, out_vocab_file)
|
145 |
+
elif not os.path.isfile(self.vocab_file):
|
146 |
+
with open(out_vocab_file, "wb") as fi:
|
147 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
148 |
+
fi.write(content_spiece_model)
|
149 |
+
|
150 |
+
return (out_vocab_file,)
|
151 |
+
|
152 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
153 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
154 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
155 |
+
|
156 |
+
output = bos_token_id + token_ids_0 + eos_token_id
|
157 |
+
|
158 |
+
if token_ids_1 is not None:
|
159 |
+
output = output + bos_token_id + token_ids_1 + eos_token_id
|
160 |
+
|
161 |
+
return output
|
162 |
+
|
163 |
+
def get_special_tokens_mask(
|
164 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
165 |
+
) -> List[int]:
|
166 |
+
"""
|
167 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
168 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
169 |
+
|
170 |
+
Args:
|
171 |
+
token_ids_0 (`List[int]`):
|
172 |
+
List of IDs.
|
173 |
+
token_ids_1 (`List[int]`, *optional*):
|
174 |
+
Optional second list of IDs for sequence pairs.
|
175 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
176 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
177 |
+
|
178 |
+
Returns:
|
179 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
180 |
+
"""
|
181 |
+
if already_has_special_tokens:
|
182 |
+
return super().get_special_tokens_mask(
|
183 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
184 |
+
)
|
185 |
+
|
186 |
+
bos_token_id = [1] if self.add_bos_token else []
|
187 |
+
eos_token_id = [1] if self.add_eos_token else []
|
188 |
+
|
189 |
+
if token_ids_1 is None:
|
190 |
+
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
|
191 |
+
return (
|
192 |
+
bos_token_id
|
193 |
+
+ ([0] * len(token_ids_0))
|
194 |
+
+ eos_token_id
|
195 |
+
+ bos_token_id
|
196 |
+
+ ([0] * len(token_ids_1))
|
197 |
+
+ eos_token_id
|
198 |
+
)
|
199 |
+
|
200 |
+
def create_token_type_ids_from_sequences(
|
201 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
202 |
+
) -> List[int]:
|
203 |
+
"""
|
204 |
+
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
|
205 |
+
sequence pair mask has the following format:
|
206 |
+
|
207 |
+
```
|
208 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
209 |
+
| first sequence | second sequence |
|
210 |
+
```
|
211 |
+
|
212 |
+
if token_ids_1 is None, only returns the first portion of the mask (0s).
|
213 |
+
|
214 |
+
Args:
|
215 |
+
token_ids_0 (`List[int]`):
|
216 |
+
List of ids.
|
217 |
+
token_ids_1 (`List[int]`, *optional*):
|
218 |
+
Optional second list of IDs for sequence pairs.
|
219 |
+
|
220 |
+
Returns:
|
221 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
222 |
+
"""
|
223 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
224 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
225 |
+
|
226 |
+
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
|
227 |
+
|
228 |
+
if token_ids_1 is not None:
|
229 |
+
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
|
230 |
+
|
231 |
+
return output
|
232 |
+
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f7d1ab69d25c74644af5c5e4dcd1cc6e96d33783dbd257b6bdea55b643c72813
|
3 |
+
size 1136765
|
tokenizer_config.json
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"auto_map": {
|
5 |
+
"AutoTokenizer": [
|
6 |
+
"tokenization_baichuan.BaichuanTokenizer",
|
7 |
+
null
|
8 |
+
]
|
9 |
+
},
|
10 |
+
"bos_token": {
|
11 |
+
"__type": "AddedToken",
|
12 |
+
"content": "<s>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": true,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": true
|
17 |
+
},
|
18 |
+
"clean_up_tokenization_spaces": false,
|
19 |
+
"eos_token": {
|
20 |
+
"__type": "AddedToken",
|
21 |
+
"content": "</s>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": true,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": true
|
26 |
+
},
|
27 |
+
"model_max_length": 4096,
|
28 |
+
"pad_token": {
|
29 |
+
"__type": "AddedToken",
|
30 |
+
"content": "<unk>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": true,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": true
|
35 |
+
},
|
36 |
+
"sp_model_kwargs": {},
|
37 |
+
"tokenizer_class": "BaichuanTokenizer",
|
38 |
+
"unk_token": {
|
39 |
+
"__type": "AddedToken",
|
40 |
+
"content": "<unk>",
|
41 |
+
"lstrip": false,
|
42 |
+
"normalized": true,
|
43 |
+
"rstrip": false,
|
44 |
+
"single_word": true
|
45 |
+
}
|
46 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,3793 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.9999180932099271,
|
5 |
+
"global_step": 6104,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.0,
|
12 |
+
"learning_rate": 1.8e-07,
|
13 |
+
"loss": 1.4588,
|
14 |
+
"step": 10
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.0,
|
18 |
+
"learning_rate": 3.8e-07,
|
19 |
+
"loss": 1.5163,
|
20 |
+
"step": 20
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.0,
|
24 |
+
"learning_rate": 5.800000000000001e-07,
|
25 |
+
"loss": 1.5383,
|
26 |
+
"step": 30
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.01,
|
30 |
+
"learning_rate": 7.8e-07,
|
31 |
+
"loss": 1.4794,
|
32 |
+
"step": 40
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.01,
|
36 |
+
"learning_rate": 9.800000000000001e-07,
|
37 |
+
"loss": 1.4675,
|
38 |
+
"step": 50
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.01,
|
42 |
+
"learning_rate": 1.1800000000000001e-06,
|
43 |
+
"loss": 1.392,
|
44 |
+
"step": 60
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.01,
|
48 |
+
"learning_rate": 1.3800000000000001e-06,
|
49 |
+
"loss": 1.4392,
|
50 |
+
"step": 70
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 0.01,
|
54 |
+
"learning_rate": 1.5800000000000001e-06,
|
55 |
+
"loss": 1.3785,
|
56 |
+
"step": 80
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 0.01,
|
60 |
+
"learning_rate": 1.7800000000000001e-06,
|
61 |
+
"loss": 1.3863,
|
62 |
+
"step": 90
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 0.02,
|
66 |
+
"learning_rate": 1.98e-06,
|
67 |
+
"loss": 1.4214,
|
68 |
+
"step": 100
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 0.02,
|
72 |
+
"learning_rate": 2.1800000000000003e-06,
|
73 |
+
"loss": 1.4741,
|
74 |
+
"step": 110
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 0.02,
|
78 |
+
"learning_rate": 2.38e-06,
|
79 |
+
"loss": 1.3113,
|
80 |
+
"step": 120
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.02,
|
84 |
+
"learning_rate": 2.5800000000000003e-06,
|
85 |
+
"loss": 1.3297,
|
86 |
+
"step": 130
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.02,
|
90 |
+
"learning_rate": 2.7800000000000005e-06,
|
91 |
+
"loss": 1.3179,
|
92 |
+
"step": 140
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 0.02,
|
96 |
+
"learning_rate": 2.9800000000000003e-06,
|
97 |
+
"loss": 1.3273,
|
98 |
+
"step": 150
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 0.03,
|
102 |
+
"learning_rate": 3.1800000000000005e-06,
|
103 |
+
"loss": 1.3637,
|
104 |
+
"step": 160
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 0.03,
|
108 |
+
"learning_rate": 3.3800000000000007e-06,
|
109 |
+
"loss": 1.4357,
|
110 |
+
"step": 170
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 0.03,
|
114 |
+
"learning_rate": 3.58e-06,
|
115 |
+
"loss": 1.3675,
|
116 |
+
"step": 180
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 0.03,
|
120 |
+
"learning_rate": 3.7800000000000002e-06,
|
121 |
+
"loss": 1.3398,
|
122 |
+
"step": 190
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.03,
|
126 |
+
"learning_rate": 3.980000000000001e-06,
|
127 |
+
"loss": 1.3694,
|
128 |
+
"step": 200
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.03,
|
132 |
+
"learning_rate": 4.18e-06,
|
133 |
+
"loss": 1.3456,
|
134 |
+
"step": 210
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 0.04,
|
138 |
+
"learning_rate": 4.38e-06,
|
139 |
+
"loss": 1.3203,
|
140 |
+
"step": 220
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 0.04,
|
144 |
+
"learning_rate": 4.58e-06,
|
145 |
+
"loss": 1.3678,
|
146 |
+
"step": 230
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 0.04,
|
150 |
+
"learning_rate": 4.78e-06,
|
151 |
+
"loss": 1.3973,
|
152 |
+
"step": 240
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 0.04,
|
156 |
+
"learning_rate": 4.980000000000001e-06,
|
157 |
+
"loss": 1.3017,
|
158 |
+
"step": 250
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 0.04,
|
162 |
+
"learning_rate": 5.18e-06,
|
163 |
+
"loss": 1.2614,
|
164 |
+
"step": 260
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.04,
|
168 |
+
"learning_rate": 5.380000000000001e-06,
|
169 |
+
"loss": 1.3756,
|
170 |
+
"step": 270
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.05,
|
174 |
+
"learning_rate": 5.580000000000001e-06,
|
175 |
+
"loss": 1.4691,
|
176 |
+
"step": 280
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 0.05,
|
180 |
+
"learning_rate": 5.78e-06,
|
181 |
+
"loss": 1.2958,
|
182 |
+
"step": 290
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 0.05,
|
186 |
+
"learning_rate": 5.98e-06,
|
187 |
+
"loss": 1.3148,
|
188 |
+
"step": 300
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 0.05,
|
192 |
+
"learning_rate": 6.18e-06,
|
193 |
+
"loss": 1.418,
|
194 |
+
"step": 310
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 0.05,
|
198 |
+
"learning_rate": 6.380000000000001e-06,
|
199 |
+
"loss": 1.3144,
|
200 |
+
"step": 320
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 0.05,
|
204 |
+
"learning_rate": 6.5800000000000005e-06,
|
205 |
+
"loss": 1.3724,
|
206 |
+
"step": 330
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.06,
|
210 |
+
"learning_rate": 6.780000000000001e-06,
|
211 |
+
"loss": 1.363,
|
212 |
+
"step": 340
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.06,
|
216 |
+
"learning_rate": 6.98e-06,
|
217 |
+
"loss": 1.2373,
|
218 |
+
"step": 350
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 0.06,
|
222 |
+
"learning_rate": 7.180000000000001e-06,
|
223 |
+
"loss": 1.3572,
|
224 |
+
"step": 360
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 0.06,
|
228 |
+
"learning_rate": 7.3800000000000005e-06,
|
229 |
+
"loss": 1.3494,
|
230 |
+
"step": 370
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"epoch": 0.06,
|
234 |
+
"learning_rate": 7.58e-06,
|
235 |
+
"loss": 1.3055,
|
236 |
+
"step": 380
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 0.06,
|
240 |
+
"learning_rate": 7.78e-06,
|
241 |
+
"loss": 1.3626,
|
242 |
+
"step": 390
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 0.07,
|
246 |
+
"learning_rate": 7.980000000000002e-06,
|
247 |
+
"loss": 1.3851,
|
248 |
+
"step": 400
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.07,
|
252 |
+
"learning_rate": 8.18e-06,
|
253 |
+
"loss": 1.2608,
|
254 |
+
"step": 410
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.07,
|
258 |
+
"learning_rate": 8.380000000000001e-06,
|
259 |
+
"loss": 1.3282,
|
260 |
+
"step": 420
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 0.07,
|
264 |
+
"learning_rate": 8.580000000000001e-06,
|
265 |
+
"loss": 1.3424,
|
266 |
+
"step": 430
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 0.07,
|
270 |
+
"learning_rate": 8.78e-06,
|
271 |
+
"loss": 1.3204,
|
272 |
+
"step": 440
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 0.07,
|
276 |
+
"learning_rate": 8.98e-06,
|
277 |
+
"loss": 1.3753,
|
278 |
+
"step": 450
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"epoch": 0.08,
|
282 |
+
"learning_rate": 9.180000000000002e-06,
|
283 |
+
"loss": 1.2741,
|
284 |
+
"step": 460
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 0.08,
|
288 |
+
"learning_rate": 9.38e-06,
|
289 |
+
"loss": 1.4024,
|
290 |
+
"step": 470
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.08,
|
294 |
+
"learning_rate": 9.58e-06,
|
295 |
+
"loss": 1.2724,
|
296 |
+
"step": 480
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.08,
|
300 |
+
"learning_rate": 9.780000000000001e-06,
|
301 |
+
"loss": 1.4165,
|
302 |
+
"step": 490
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"epoch": 0.08,
|
306 |
+
"learning_rate": 9.980000000000001e-06,
|
307 |
+
"loss": 1.3768,
|
308 |
+
"step": 500
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"epoch": 0.08,
|
312 |
+
"learning_rate": 1e-05,
|
313 |
+
"loss": 1.3327,
|
314 |
+
"step": 510
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"epoch": 0.09,
|
318 |
+
"learning_rate": 1e-05,
|
319 |
+
"loss": 1.3627,
|
320 |
+
"step": 520
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"epoch": 0.09,
|
324 |
+
"learning_rate": 1e-05,
|
325 |
+
"loss": 1.3674,
|
326 |
+
"step": 530
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 0.09,
|
330 |
+
"learning_rate": 1e-05,
|
331 |
+
"loss": 1.4293,
|
332 |
+
"step": 540
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 0.09,
|
336 |
+
"learning_rate": 1e-05,
|
337 |
+
"loss": 1.2829,
|
338 |
+
"step": 550
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.09,
|
342 |
+
"learning_rate": 1e-05,
|
343 |
+
"loss": 1.4258,
|
344 |
+
"step": 560
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"epoch": 0.09,
|
348 |
+
"learning_rate": 1e-05,
|
349 |
+
"loss": 1.3552,
|
350 |
+
"step": 570
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"epoch": 0.1,
|
354 |
+
"learning_rate": 1e-05,
|
355 |
+
"loss": 1.4267,
|
356 |
+
"step": 580
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"epoch": 0.1,
|
360 |
+
"learning_rate": 1e-05,
|
361 |
+
"loss": 1.3482,
|
362 |
+
"step": 590
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"epoch": 0.1,
|
366 |
+
"learning_rate": 1e-05,
|
367 |
+
"loss": 1.3768,
|
368 |
+
"step": 600
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 0.1,
|
372 |
+
"learning_rate": 1e-05,
|
373 |
+
"loss": 1.4167,
|
374 |
+
"step": 610
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 0.1,
|
378 |
+
"learning_rate": 1e-05,
|
379 |
+
"loss": 1.3562,
|
380 |
+
"step": 620
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.1,
|
384 |
+
"learning_rate": 1e-05,
|
385 |
+
"loss": 1.3819,
|
386 |
+
"step": 630
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"epoch": 0.1,
|
390 |
+
"learning_rate": 1e-05,
|
391 |
+
"loss": 1.3362,
|
392 |
+
"step": 640
|
393 |
+
},
|
394 |
+
{
|
395 |
+
"epoch": 0.11,
|
396 |
+
"learning_rate": 1e-05,
|
397 |
+
"loss": 1.3477,
|
398 |
+
"step": 650
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"epoch": 0.11,
|
402 |
+
"learning_rate": 1e-05,
|
403 |
+
"loss": 1.3238,
|
404 |
+
"step": 660
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"epoch": 0.11,
|
408 |
+
"learning_rate": 1e-05,
|
409 |
+
"loss": 1.3467,
|
410 |
+
"step": 670
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 0.11,
|
414 |
+
"learning_rate": 1e-05,
|
415 |
+
"loss": 1.3679,
|
416 |
+
"step": 680
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 0.11,
|
420 |
+
"learning_rate": 1e-05,
|
421 |
+
"loss": 1.325,
|
422 |
+
"step": 690
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.11,
|
426 |
+
"learning_rate": 1e-05,
|
427 |
+
"loss": 1.2288,
|
428 |
+
"step": 700
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"epoch": 0.12,
|
432 |
+
"learning_rate": 1e-05,
|
433 |
+
"loss": 1.2394,
|
434 |
+
"step": 710
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"epoch": 0.12,
|
438 |
+
"learning_rate": 1e-05,
|
439 |
+
"loss": 1.2945,
|
440 |
+
"step": 720
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"epoch": 0.12,
|
444 |
+
"learning_rate": 1e-05,
|
445 |
+
"loss": 1.2176,
|
446 |
+
"step": 730
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"epoch": 0.12,
|
450 |
+
"learning_rate": 1e-05,
|
451 |
+
"loss": 1.3438,
|
452 |
+
"step": 740
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"epoch": 0.12,
|
456 |
+
"learning_rate": 1e-05,
|
457 |
+
"loss": 1.3514,
|
458 |
+
"step": 750
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 0.12,
|
462 |
+
"learning_rate": 1e-05,
|
463 |
+
"loss": 1.3976,
|
464 |
+
"step": 760
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.13,
|
468 |
+
"learning_rate": 1e-05,
|
469 |
+
"loss": 1.3542,
|
470 |
+
"step": 770
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"epoch": 0.13,
|
474 |
+
"learning_rate": 1e-05,
|
475 |
+
"loss": 1.3002,
|
476 |
+
"step": 780
|
477 |
+
},
|
478 |
+
{
|
479 |
+
"epoch": 0.13,
|
480 |
+
"learning_rate": 1e-05,
|
481 |
+
"loss": 1.2712,
|
482 |
+
"step": 790
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"epoch": 0.13,
|
486 |
+
"learning_rate": 1e-05,
|
487 |
+
"loss": 1.427,
|
488 |
+
"step": 800
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"epoch": 0.13,
|
492 |
+
"learning_rate": 1e-05,
|
493 |
+
"loss": 1.329,
|
494 |
+
"step": 810
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 0.13,
|
498 |
+
"learning_rate": 1e-05,
|
499 |
+
"loss": 1.3053,
|
500 |
+
"step": 820
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 0.14,
|
504 |
+
"learning_rate": 1e-05,
|
505 |
+
"loss": 1.3724,
|
506 |
+
"step": 830
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.14,
|
510 |
+
"learning_rate": 1e-05,
|
511 |
+
"loss": 1.2535,
|
512 |
+
"step": 840
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"epoch": 0.14,
|
516 |
+
"learning_rate": 1e-05,
|
517 |
+
"loss": 1.3213,
|
518 |
+
"step": 850
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"epoch": 0.14,
|
522 |
+
"learning_rate": 1e-05,
|
523 |
+
"loss": 1.23,
|
524 |
+
"step": 860
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"epoch": 0.14,
|
528 |
+
"learning_rate": 1e-05,
|
529 |
+
"loss": 1.2782,
|
530 |
+
"step": 870
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"epoch": 0.14,
|
534 |
+
"learning_rate": 1e-05,
|
535 |
+
"loss": 1.3225,
|
536 |
+
"step": 880
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 0.15,
|
540 |
+
"learning_rate": 1e-05,
|
541 |
+
"loss": 1.2838,
|
542 |
+
"step": 890
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 0.15,
|
546 |
+
"learning_rate": 1e-05,
|
547 |
+
"loss": 1.3434,
|
548 |
+
"step": 900
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.15,
|
552 |
+
"learning_rate": 1e-05,
|
553 |
+
"loss": 1.2737,
|
554 |
+
"step": 910
|
555 |
+
},
|
556 |
+
{
|
557 |
+
"epoch": 0.15,
|
558 |
+
"learning_rate": 1e-05,
|
559 |
+
"loss": 1.3334,
|
560 |
+
"step": 920
|
561 |
+
},
|
562 |
+
{
|
563 |
+
"epoch": 0.15,
|
564 |
+
"learning_rate": 1e-05,
|
565 |
+
"loss": 1.2737,
|
566 |
+
"step": 930
|
567 |
+
},
|
568 |
+
{
|
569 |
+
"epoch": 0.15,
|
570 |
+
"learning_rate": 1e-05,
|
571 |
+
"loss": 1.3841,
|
572 |
+
"step": 940
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"epoch": 0.16,
|
576 |
+
"learning_rate": 1e-05,
|
577 |
+
"loss": 1.3208,
|
578 |
+
"step": 950
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 0.16,
|
582 |
+
"learning_rate": 1e-05,
|
583 |
+
"loss": 1.2985,
|
584 |
+
"step": 960
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 0.16,
|
588 |
+
"learning_rate": 1e-05,
|
589 |
+
"loss": 1.3755,
|
590 |
+
"step": 970
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.16,
|
594 |
+
"learning_rate": 1e-05,
|
595 |
+
"loss": 1.2616,
|
596 |
+
"step": 980
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"epoch": 0.16,
|
600 |
+
"learning_rate": 1e-05,
|
601 |
+
"loss": 1.3529,
|
602 |
+
"step": 990
|
603 |
+
},
|
604 |
+
{
|
605 |
+
"epoch": 0.16,
|
606 |
+
"learning_rate": 1e-05,
|
607 |
+
"loss": 1.3163,
|
608 |
+
"step": 1000
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 0.17,
|
612 |
+
"learning_rate": 1e-05,
|
613 |
+
"loss": 1.2914,
|
614 |
+
"step": 1010
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"epoch": 0.17,
|
618 |
+
"learning_rate": 1e-05,
|
619 |
+
"loss": 1.4547,
|
620 |
+
"step": 1020
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 0.17,
|
624 |
+
"learning_rate": 1e-05,
|
625 |
+
"loss": 1.2758,
|
626 |
+
"step": 1030
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 0.17,
|
630 |
+
"learning_rate": 1e-05,
|
631 |
+
"loss": 1.3591,
|
632 |
+
"step": 1040
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.17,
|
636 |
+
"learning_rate": 1e-05,
|
637 |
+
"loss": 1.3162,
|
638 |
+
"step": 1050
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"epoch": 0.17,
|
642 |
+
"learning_rate": 1e-05,
|
643 |
+
"loss": 1.2589,
|
644 |
+
"step": 1060
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"epoch": 0.18,
|
648 |
+
"learning_rate": 1e-05,
|
649 |
+
"loss": 1.3123,
|
650 |
+
"step": 1070
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"epoch": 0.18,
|
654 |
+
"learning_rate": 1e-05,
|
655 |
+
"loss": 1.3089,
|
656 |
+
"step": 1080
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"epoch": 0.18,
|
660 |
+
"learning_rate": 1e-05,
|
661 |
+
"loss": 1.2332,
|
662 |
+
"step": 1090
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 0.18,
|
666 |
+
"learning_rate": 1e-05,
|
667 |
+
"loss": 1.3301,
|
668 |
+
"step": 1100
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 0.18,
|
672 |
+
"learning_rate": 1e-05,
|
673 |
+
"loss": 1.3039,
|
674 |
+
"step": 1110
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.18,
|
678 |
+
"learning_rate": 1e-05,
|
679 |
+
"loss": 1.3132,
|
680 |
+
"step": 1120
|
681 |
+
},
|
682 |
+
{
|
683 |
+
"epoch": 0.19,
|
684 |
+
"learning_rate": 1e-05,
|
685 |
+
"loss": 1.3389,
|
686 |
+
"step": 1130
|
687 |
+
},
|
688 |
+
{
|
689 |
+
"epoch": 0.19,
|
690 |
+
"learning_rate": 1e-05,
|
691 |
+
"loss": 1.2938,
|
692 |
+
"step": 1140
|
693 |
+
},
|
694 |
+
{
|
695 |
+
"epoch": 0.19,
|
696 |
+
"learning_rate": 1e-05,
|
697 |
+
"loss": 1.2528,
|
698 |
+
"step": 1150
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"epoch": 0.19,
|
702 |
+
"learning_rate": 1e-05,
|
703 |
+
"loss": 1.3062,
|
704 |
+
"step": 1160
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"epoch": 0.19,
|
708 |
+
"learning_rate": 1e-05,
|
709 |
+
"loss": 1.2864,
|
710 |
+
"step": 1170
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 0.19,
|
714 |
+
"learning_rate": 1e-05,
|
715 |
+
"loss": 1.2356,
|
716 |
+
"step": 1180
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.19,
|
720 |
+
"learning_rate": 1e-05,
|
721 |
+
"loss": 1.2604,
|
722 |
+
"step": 1190
|
723 |
+
},
|
724 |
+
{
|
725 |
+
"epoch": 0.2,
|
726 |
+
"learning_rate": 1e-05,
|
727 |
+
"loss": 1.2845,
|
728 |
+
"step": 1200
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"epoch": 0.2,
|
732 |
+
"learning_rate": 1e-05,
|
733 |
+
"loss": 1.3801,
|
734 |
+
"step": 1210
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"epoch": 0.2,
|
738 |
+
"learning_rate": 1e-05,
|
739 |
+
"loss": 1.3173,
|
740 |
+
"step": 1220
|
741 |
+
},
|
742 |
+
{
|
743 |
+
"epoch": 0.2,
|
744 |
+
"learning_rate": 1e-05,
|
745 |
+
"loss": 1.272,
|
746 |
+
"step": 1230
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"epoch": 0.2,
|
750 |
+
"learning_rate": 1e-05,
|
751 |
+
"loss": 1.3123,
|
752 |
+
"step": 1240
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"epoch": 0.2,
|
756 |
+
"learning_rate": 1e-05,
|
757 |
+
"loss": 1.3632,
|
758 |
+
"step": 1250
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.21,
|
762 |
+
"learning_rate": 1e-05,
|
763 |
+
"loss": 1.3333,
|
764 |
+
"step": 1260
|
765 |
+
},
|
766 |
+
{
|
767 |
+
"epoch": 0.21,
|
768 |
+
"learning_rate": 1e-05,
|
769 |
+
"loss": 1.3122,
|
770 |
+
"step": 1270
|
771 |
+
},
|
772 |
+
{
|
773 |
+
"epoch": 0.21,
|
774 |
+
"learning_rate": 1e-05,
|
775 |
+
"loss": 1.317,
|
776 |
+
"step": 1280
|
777 |
+
},
|
778 |
+
{
|
779 |
+
"epoch": 0.21,
|
780 |
+
"learning_rate": 1e-05,
|
781 |
+
"loss": 1.2972,
|
782 |
+
"step": 1290
|
783 |
+
},
|
784 |
+
{
|
785 |
+
"epoch": 0.21,
|
786 |
+
"learning_rate": 1e-05,
|
787 |
+
"loss": 1.2496,
|
788 |
+
"step": 1300
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"epoch": 0.21,
|
792 |
+
"learning_rate": 1e-05,
|
793 |
+
"loss": 1.2843,
|
794 |
+
"step": 1310
|
795 |
+
},
|
796 |
+
{
|
797 |
+
"epoch": 0.22,
|
798 |
+
"learning_rate": 1e-05,
|
799 |
+
"loss": 1.3373,
|
800 |
+
"step": 1320
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.22,
|
804 |
+
"learning_rate": 1e-05,
|
805 |
+
"loss": 1.2508,
|
806 |
+
"step": 1330
|
807 |
+
},
|
808 |
+
{
|
809 |
+
"epoch": 0.22,
|
810 |
+
"learning_rate": 1e-05,
|
811 |
+
"loss": 1.4132,
|
812 |
+
"step": 1340
|
813 |
+
},
|
814 |
+
{
|
815 |
+
"epoch": 0.22,
|
816 |
+
"learning_rate": 1e-05,
|
817 |
+
"loss": 1.2656,
|
818 |
+
"step": 1350
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"epoch": 0.22,
|
822 |
+
"learning_rate": 1e-05,
|
823 |
+
"loss": 1.3105,
|
824 |
+
"step": 1360
|
825 |
+
},
|
826 |
+
{
|
827 |
+
"epoch": 0.22,
|
828 |
+
"learning_rate": 1e-05,
|
829 |
+
"loss": 1.3734,
|
830 |
+
"step": 1370
|
831 |
+
},
|
832 |
+
{
|
833 |
+
"epoch": 0.23,
|
834 |
+
"learning_rate": 1e-05,
|
835 |
+
"loss": 1.3538,
|
836 |
+
"step": 1380
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"epoch": 0.23,
|
840 |
+
"learning_rate": 1e-05,
|
841 |
+
"loss": 1.2767,
|
842 |
+
"step": 1390
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.23,
|
846 |
+
"learning_rate": 1e-05,
|
847 |
+
"loss": 1.4437,
|
848 |
+
"step": 1400
|
849 |
+
},
|
850 |
+
{
|
851 |
+
"epoch": 0.23,
|
852 |
+
"learning_rate": 1e-05,
|
853 |
+
"loss": 1.2782,
|
854 |
+
"step": 1410
|
855 |
+
},
|
856 |
+
{
|
857 |
+
"epoch": 0.23,
|
858 |
+
"learning_rate": 1e-05,
|
859 |
+
"loss": 1.2588,
|
860 |
+
"step": 1420
|
861 |
+
},
|
862 |
+
{
|
863 |
+
"epoch": 0.23,
|
864 |
+
"learning_rate": 1e-05,
|
865 |
+
"loss": 1.3658,
|
866 |
+
"step": 1430
|
867 |
+
},
|
868 |
+
{
|
869 |
+
"epoch": 0.24,
|
870 |
+
"learning_rate": 1e-05,
|
871 |
+
"loss": 1.3161,
|
872 |
+
"step": 1440
|
873 |
+
},
|
874 |
+
{
|
875 |
+
"epoch": 0.24,
|
876 |
+
"learning_rate": 1e-05,
|
877 |
+
"loss": 1.3481,
|
878 |
+
"step": 1450
|
879 |
+
},
|
880 |
+
{
|
881 |
+
"epoch": 0.24,
|
882 |
+
"learning_rate": 1e-05,
|
883 |
+
"loss": 1.3329,
|
884 |
+
"step": 1460
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 0.24,
|
888 |
+
"learning_rate": 1e-05,
|
889 |
+
"loss": 1.2643,
|
890 |
+
"step": 1470
|
891 |
+
},
|
892 |
+
{
|
893 |
+
"epoch": 0.24,
|
894 |
+
"learning_rate": 1e-05,
|
895 |
+
"loss": 1.3022,
|
896 |
+
"step": 1480
|
897 |
+
},
|
898 |
+
{
|
899 |
+
"epoch": 0.24,
|
900 |
+
"learning_rate": 1e-05,
|
901 |
+
"loss": 1.2482,
|
902 |
+
"step": 1490
|
903 |
+
},
|
904 |
+
{
|
905 |
+
"epoch": 0.25,
|
906 |
+
"learning_rate": 1e-05,
|
907 |
+
"loss": 1.3112,
|
908 |
+
"step": 1500
|
909 |
+
},
|
910 |
+
{
|
911 |
+
"epoch": 0.25,
|
912 |
+
"learning_rate": 1e-05,
|
913 |
+
"loss": 1.335,
|
914 |
+
"step": 1510
|
915 |
+
},
|
916 |
+
{
|
917 |
+
"epoch": 0.25,
|
918 |
+
"learning_rate": 1e-05,
|
919 |
+
"loss": 1.2738,
|
920 |
+
"step": 1520
|
921 |
+
},
|
922 |
+
{
|
923 |
+
"epoch": 0.25,
|
924 |
+
"learning_rate": 1e-05,
|
925 |
+
"loss": 1.3219,
|
926 |
+
"step": 1530
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 0.25,
|
930 |
+
"learning_rate": 1e-05,
|
931 |
+
"loss": 1.3446,
|
932 |
+
"step": 1540
|
933 |
+
},
|
934 |
+
{
|
935 |
+
"epoch": 0.25,
|
936 |
+
"learning_rate": 1e-05,
|
937 |
+
"loss": 1.2233,
|
938 |
+
"step": 1550
|
939 |
+
},
|
940 |
+
{
|
941 |
+
"epoch": 0.26,
|
942 |
+
"learning_rate": 1e-05,
|
943 |
+
"loss": 1.2723,
|
944 |
+
"step": 1560
|
945 |
+
},
|
946 |
+
{
|
947 |
+
"epoch": 0.26,
|
948 |
+
"learning_rate": 1e-05,
|
949 |
+
"loss": 1.3748,
|
950 |
+
"step": 1570
|
951 |
+
},
|
952 |
+
{
|
953 |
+
"epoch": 0.26,
|
954 |
+
"learning_rate": 1e-05,
|
955 |
+
"loss": 1.3433,
|
956 |
+
"step": 1580
|
957 |
+
},
|
958 |
+
{
|
959 |
+
"epoch": 0.26,
|
960 |
+
"learning_rate": 1e-05,
|
961 |
+
"loss": 1.2581,
|
962 |
+
"step": 1590
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"epoch": 0.26,
|
966 |
+
"learning_rate": 1e-05,
|
967 |
+
"loss": 1.2938,
|
968 |
+
"step": 1600
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 0.26,
|
972 |
+
"learning_rate": 1e-05,
|
973 |
+
"loss": 1.3463,
|
974 |
+
"step": 1610
|
975 |
+
},
|
976 |
+
{
|
977 |
+
"epoch": 0.27,
|
978 |
+
"learning_rate": 1e-05,
|
979 |
+
"loss": 1.3424,
|
980 |
+
"step": 1620
|
981 |
+
},
|
982 |
+
{
|
983 |
+
"epoch": 0.27,
|
984 |
+
"learning_rate": 1e-05,
|
985 |
+
"loss": 1.2639,
|
986 |
+
"step": 1630
|
987 |
+
},
|
988 |
+
{
|
989 |
+
"epoch": 0.27,
|
990 |
+
"learning_rate": 1e-05,
|
991 |
+
"loss": 1.3822,
|
992 |
+
"step": 1640
|
993 |
+
},
|
994 |
+
{
|
995 |
+
"epoch": 0.27,
|
996 |
+
"learning_rate": 1e-05,
|
997 |
+
"loss": 1.3105,
|
998 |
+
"step": 1650
|
999 |
+
},
|
1000 |
+
{
|
1001 |
+
"epoch": 0.27,
|
1002 |
+
"learning_rate": 1e-05,
|
1003 |
+
"loss": 1.3273,
|
1004 |
+
"step": 1660
|
1005 |
+
},
|
1006 |
+
{
|
1007 |
+
"epoch": 0.27,
|
1008 |
+
"learning_rate": 1e-05,
|
1009 |
+
"loss": 1.4105,
|
1010 |
+
"step": 1670
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 0.28,
|
1014 |
+
"learning_rate": 1e-05,
|
1015 |
+
"loss": 1.3346,
|
1016 |
+
"step": 1680
|
1017 |
+
},
|
1018 |
+
{
|
1019 |
+
"epoch": 0.28,
|
1020 |
+
"learning_rate": 1e-05,
|
1021 |
+
"loss": 1.3361,
|
1022 |
+
"step": 1690
|
1023 |
+
},
|
1024 |
+
{
|
1025 |
+
"epoch": 0.28,
|
1026 |
+
"learning_rate": 1e-05,
|
1027 |
+
"loss": 1.3085,
|
1028 |
+
"step": 1700
|
1029 |
+
},
|
1030 |
+
{
|
1031 |
+
"epoch": 0.28,
|
1032 |
+
"learning_rate": 1e-05,
|
1033 |
+
"loss": 1.3822,
|
1034 |
+
"step": 1710
|
1035 |
+
},
|
1036 |
+
{
|
1037 |
+
"epoch": 0.28,
|
1038 |
+
"learning_rate": 1e-05,
|
1039 |
+
"loss": 1.2784,
|
1040 |
+
"step": 1720
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"epoch": 0.28,
|
1044 |
+
"learning_rate": 1e-05,
|
1045 |
+
"loss": 1.3267,
|
1046 |
+
"step": 1730
|
1047 |
+
},
|
1048 |
+
{
|
1049 |
+
"epoch": 0.29,
|
1050 |
+
"learning_rate": 1e-05,
|
1051 |
+
"loss": 1.2102,
|
1052 |
+
"step": 1740
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 0.29,
|
1056 |
+
"learning_rate": 1e-05,
|
1057 |
+
"loss": 1.2318,
|
1058 |
+
"step": 1750
|
1059 |
+
},
|
1060 |
+
{
|
1061 |
+
"epoch": 0.29,
|
1062 |
+
"learning_rate": 1e-05,
|
1063 |
+
"loss": 1.2865,
|
1064 |
+
"step": 1760
|
1065 |
+
},
|
1066 |
+
{
|
1067 |
+
"epoch": 0.29,
|
1068 |
+
"learning_rate": 1e-05,
|
1069 |
+
"loss": 1.4117,
|
1070 |
+
"step": 1770
|
1071 |
+
},
|
1072 |
+
{
|
1073 |
+
"epoch": 0.29,
|
1074 |
+
"learning_rate": 1e-05,
|
1075 |
+
"loss": 1.2947,
|
1076 |
+
"step": 1780
|
1077 |
+
},
|
1078 |
+
{
|
1079 |
+
"epoch": 0.29,
|
1080 |
+
"learning_rate": 1e-05,
|
1081 |
+
"loss": 1.3536,
|
1082 |
+
"step": 1790
|
1083 |
+
},
|
1084 |
+
{
|
1085 |
+
"epoch": 0.29,
|
1086 |
+
"learning_rate": 1e-05,
|
1087 |
+
"loss": 1.3179,
|
1088 |
+
"step": 1800
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"epoch": 0.3,
|
1092 |
+
"learning_rate": 1e-05,
|
1093 |
+
"loss": 1.3403,
|
1094 |
+
"step": 1810
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 0.3,
|
1098 |
+
"learning_rate": 1e-05,
|
1099 |
+
"loss": 1.3984,
|
1100 |
+
"step": 1820
|
1101 |
+
},
|
1102 |
+
{
|
1103 |
+
"epoch": 0.3,
|
1104 |
+
"learning_rate": 1e-05,
|
1105 |
+
"loss": 1.2817,
|
1106 |
+
"step": 1830
|
1107 |
+
},
|
1108 |
+
{
|
1109 |
+
"epoch": 0.3,
|
1110 |
+
"learning_rate": 1e-05,
|
1111 |
+
"loss": 1.3239,
|
1112 |
+
"step": 1840
|
1113 |
+
},
|
1114 |
+
{
|
1115 |
+
"epoch": 0.3,
|
1116 |
+
"learning_rate": 1e-05,
|
1117 |
+
"loss": 1.3182,
|
1118 |
+
"step": 1850
|
1119 |
+
},
|
1120 |
+
{
|
1121 |
+
"epoch": 0.3,
|
1122 |
+
"learning_rate": 1e-05,
|
1123 |
+
"loss": 1.3002,
|
1124 |
+
"step": 1860
|
1125 |
+
},
|
1126 |
+
{
|
1127 |
+
"epoch": 0.31,
|
1128 |
+
"learning_rate": 1e-05,
|
1129 |
+
"loss": 1.2652,
|
1130 |
+
"step": 1870
|
1131 |
+
},
|
1132 |
+
{
|
1133 |
+
"epoch": 0.31,
|
1134 |
+
"learning_rate": 1e-05,
|
1135 |
+
"loss": 1.2937,
|
1136 |
+
"step": 1880
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 0.31,
|
1140 |
+
"learning_rate": 1e-05,
|
1141 |
+
"loss": 1.3046,
|
1142 |
+
"step": 1890
|
1143 |
+
},
|
1144 |
+
{
|
1145 |
+
"epoch": 0.31,
|
1146 |
+
"learning_rate": 1e-05,
|
1147 |
+
"loss": 1.3152,
|
1148 |
+
"step": 1900
|
1149 |
+
},
|
1150 |
+
{
|
1151 |
+
"epoch": 0.31,
|
1152 |
+
"learning_rate": 1e-05,
|
1153 |
+
"loss": 1.3017,
|
1154 |
+
"step": 1910
|
1155 |
+
},
|
1156 |
+
{
|
1157 |
+
"epoch": 0.31,
|
1158 |
+
"learning_rate": 1e-05,
|
1159 |
+
"loss": 1.2774,
|
1160 |
+
"step": 1920
|
1161 |
+
},
|
1162 |
+
{
|
1163 |
+
"epoch": 0.32,
|
1164 |
+
"learning_rate": 1e-05,
|
1165 |
+
"loss": 1.2409,
|
1166 |
+
"step": 1930
|
1167 |
+
},
|
1168 |
+
{
|
1169 |
+
"epoch": 0.32,
|
1170 |
+
"learning_rate": 1e-05,
|
1171 |
+
"loss": 1.2773,
|
1172 |
+
"step": 1940
|
1173 |
+
},
|
1174 |
+
{
|
1175 |
+
"epoch": 0.32,
|
1176 |
+
"learning_rate": 1e-05,
|
1177 |
+
"loss": 1.3688,
|
1178 |
+
"step": 1950
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 0.32,
|
1182 |
+
"learning_rate": 1e-05,
|
1183 |
+
"loss": 1.3041,
|
1184 |
+
"step": 1960
|
1185 |
+
},
|
1186 |
+
{
|
1187 |
+
"epoch": 0.32,
|
1188 |
+
"learning_rate": 1e-05,
|
1189 |
+
"loss": 1.3089,
|
1190 |
+
"step": 1970
|
1191 |
+
},
|
1192 |
+
{
|
1193 |
+
"epoch": 0.32,
|
1194 |
+
"learning_rate": 1e-05,
|
1195 |
+
"loss": 1.2131,
|
1196 |
+
"step": 1980
|
1197 |
+
},
|
1198 |
+
{
|
1199 |
+
"epoch": 0.33,
|
1200 |
+
"learning_rate": 1e-05,
|
1201 |
+
"loss": 1.3107,
|
1202 |
+
"step": 1990
|
1203 |
+
},
|
1204 |
+
{
|
1205 |
+
"epoch": 0.33,
|
1206 |
+
"learning_rate": 1e-05,
|
1207 |
+
"loss": 1.2902,
|
1208 |
+
"step": 2000
|
1209 |
+
},
|
1210 |
+
{
|
1211 |
+
"epoch": 0.33,
|
1212 |
+
"learning_rate": 1e-05,
|
1213 |
+
"loss": 1.2635,
|
1214 |
+
"step": 2010
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"epoch": 0.33,
|
1218 |
+
"learning_rate": 1e-05,
|
1219 |
+
"loss": 1.3283,
|
1220 |
+
"step": 2020
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 0.33,
|
1224 |
+
"learning_rate": 1e-05,
|
1225 |
+
"loss": 1.37,
|
1226 |
+
"step": 2030
|
1227 |
+
},
|
1228 |
+
{
|
1229 |
+
"epoch": 0.33,
|
1230 |
+
"learning_rate": 1e-05,
|
1231 |
+
"loss": 1.3471,
|
1232 |
+
"step": 2040
|
1233 |
+
},
|
1234 |
+
{
|
1235 |
+
"epoch": 0.34,
|
1236 |
+
"learning_rate": 1e-05,
|
1237 |
+
"loss": 1.2582,
|
1238 |
+
"step": 2050
|
1239 |
+
},
|
1240 |
+
{
|
1241 |
+
"epoch": 0.34,
|
1242 |
+
"learning_rate": 1e-05,
|
1243 |
+
"loss": 1.2883,
|
1244 |
+
"step": 2060
|
1245 |
+
},
|
1246 |
+
{
|
1247 |
+
"epoch": 0.34,
|
1248 |
+
"learning_rate": 1e-05,
|
1249 |
+
"loss": 1.3454,
|
1250 |
+
"step": 2070
|
1251 |
+
},
|
1252 |
+
{
|
1253 |
+
"epoch": 0.34,
|
1254 |
+
"learning_rate": 1e-05,
|
1255 |
+
"loss": 1.2927,
|
1256 |
+
"step": 2080
|
1257 |
+
},
|
1258 |
+
{
|
1259 |
+
"epoch": 0.34,
|
1260 |
+
"learning_rate": 1e-05,
|
1261 |
+
"loss": 1.337,
|
1262 |
+
"step": 2090
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 0.34,
|
1266 |
+
"learning_rate": 1e-05,
|
1267 |
+
"loss": 1.2725,
|
1268 |
+
"step": 2100
|
1269 |
+
},
|
1270 |
+
{
|
1271 |
+
"epoch": 0.35,
|
1272 |
+
"learning_rate": 1e-05,
|
1273 |
+
"loss": 1.3667,
|
1274 |
+
"step": 2110
|
1275 |
+
},
|
1276 |
+
{
|
1277 |
+
"epoch": 0.35,
|
1278 |
+
"learning_rate": 1e-05,
|
1279 |
+
"loss": 1.2807,
|
1280 |
+
"step": 2120
|
1281 |
+
},
|
1282 |
+
{
|
1283 |
+
"epoch": 0.35,
|
1284 |
+
"learning_rate": 1e-05,
|
1285 |
+
"loss": 1.283,
|
1286 |
+
"step": 2130
|
1287 |
+
},
|
1288 |
+
{
|
1289 |
+
"epoch": 0.35,
|
1290 |
+
"learning_rate": 1e-05,
|
1291 |
+
"loss": 1.2922,
|
1292 |
+
"step": 2140
|
1293 |
+
},
|
1294 |
+
{
|
1295 |
+
"epoch": 0.35,
|
1296 |
+
"learning_rate": 1e-05,
|
1297 |
+
"loss": 1.2685,
|
1298 |
+
"step": 2150
|
1299 |
+
},
|
1300 |
+
{
|
1301 |
+
"epoch": 0.35,
|
1302 |
+
"learning_rate": 1e-05,
|
1303 |
+
"loss": 1.2355,
|
1304 |
+
"step": 2160
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 0.36,
|
1308 |
+
"learning_rate": 1e-05,
|
1309 |
+
"loss": 1.2418,
|
1310 |
+
"step": 2170
|
1311 |
+
},
|
1312 |
+
{
|
1313 |
+
"epoch": 0.36,
|
1314 |
+
"learning_rate": 1e-05,
|
1315 |
+
"loss": 1.2759,
|
1316 |
+
"step": 2180
|
1317 |
+
},
|
1318 |
+
{
|
1319 |
+
"epoch": 0.36,
|
1320 |
+
"learning_rate": 1e-05,
|
1321 |
+
"loss": 1.2873,
|
1322 |
+
"step": 2190
|
1323 |
+
},
|
1324 |
+
{
|
1325 |
+
"epoch": 0.36,
|
1326 |
+
"learning_rate": 1e-05,
|
1327 |
+
"loss": 1.2961,
|
1328 |
+
"step": 2200
|
1329 |
+
},
|
1330 |
+
{
|
1331 |
+
"epoch": 0.36,
|
1332 |
+
"learning_rate": 1e-05,
|
1333 |
+
"loss": 1.3602,
|
1334 |
+
"step": 2210
|
1335 |
+
},
|
1336 |
+
{
|
1337 |
+
"epoch": 0.36,
|
1338 |
+
"learning_rate": 1e-05,
|
1339 |
+
"loss": 1.463,
|
1340 |
+
"step": 2220
|
1341 |
+
},
|
1342 |
+
{
|
1343 |
+
"epoch": 0.37,
|
1344 |
+
"learning_rate": 1e-05,
|
1345 |
+
"loss": 1.2493,
|
1346 |
+
"step": 2230
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 0.37,
|
1350 |
+
"learning_rate": 1e-05,
|
1351 |
+
"loss": 1.2928,
|
1352 |
+
"step": 2240
|
1353 |
+
},
|
1354 |
+
{
|
1355 |
+
"epoch": 0.37,
|
1356 |
+
"learning_rate": 1e-05,
|
1357 |
+
"loss": 1.2797,
|
1358 |
+
"step": 2250
|
1359 |
+
},
|
1360 |
+
{
|
1361 |
+
"epoch": 0.37,
|
1362 |
+
"learning_rate": 1e-05,
|
1363 |
+
"loss": 1.2727,
|
1364 |
+
"step": 2260
|
1365 |
+
},
|
1366 |
+
{
|
1367 |
+
"epoch": 0.37,
|
1368 |
+
"learning_rate": 1e-05,
|
1369 |
+
"loss": 1.3153,
|
1370 |
+
"step": 2270
|
1371 |
+
},
|
1372 |
+
{
|
1373 |
+
"epoch": 0.37,
|
1374 |
+
"learning_rate": 1e-05,
|
1375 |
+
"loss": 1.3328,
|
1376 |
+
"step": 2280
|
1377 |
+
},
|
1378 |
+
{
|
1379 |
+
"epoch": 0.38,
|
1380 |
+
"learning_rate": 1e-05,
|
1381 |
+
"loss": 1.312,
|
1382 |
+
"step": 2290
|
1383 |
+
},
|
1384 |
+
{
|
1385 |
+
"epoch": 0.38,
|
1386 |
+
"learning_rate": 1e-05,
|
1387 |
+
"loss": 1.3117,
|
1388 |
+
"step": 2300
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 0.38,
|
1392 |
+
"learning_rate": 1e-05,
|
1393 |
+
"loss": 1.3142,
|
1394 |
+
"step": 2310
|
1395 |
+
},
|
1396 |
+
{
|
1397 |
+
"epoch": 0.38,
|
1398 |
+
"learning_rate": 1e-05,
|
1399 |
+
"loss": 1.3553,
|
1400 |
+
"step": 2320
|
1401 |
+
},
|
1402 |
+
{
|
1403 |
+
"epoch": 0.38,
|
1404 |
+
"learning_rate": 1e-05,
|
1405 |
+
"loss": 1.3259,
|
1406 |
+
"step": 2330
|
1407 |
+
},
|
1408 |
+
{
|
1409 |
+
"epoch": 0.38,
|
1410 |
+
"learning_rate": 1e-05,
|
1411 |
+
"loss": 1.2908,
|
1412 |
+
"step": 2340
|
1413 |
+
},
|
1414 |
+
{
|
1415 |
+
"epoch": 0.38,
|
1416 |
+
"learning_rate": 1e-05,
|
1417 |
+
"loss": 1.3421,
|
1418 |
+
"step": 2350
|
1419 |
+
},
|
1420 |
+
{
|
1421 |
+
"epoch": 0.39,
|
1422 |
+
"learning_rate": 1e-05,
|
1423 |
+
"loss": 1.2947,
|
1424 |
+
"step": 2360
|
1425 |
+
},
|
1426 |
+
{
|
1427 |
+
"epoch": 0.39,
|
1428 |
+
"learning_rate": 1e-05,
|
1429 |
+
"loss": 1.2784,
|
1430 |
+
"step": 2370
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 0.39,
|
1434 |
+
"learning_rate": 1e-05,
|
1435 |
+
"loss": 1.2878,
|
1436 |
+
"step": 2380
|
1437 |
+
},
|
1438 |
+
{
|
1439 |
+
"epoch": 0.39,
|
1440 |
+
"learning_rate": 1e-05,
|
1441 |
+
"loss": 1.2465,
|
1442 |
+
"step": 2390
|
1443 |
+
},
|
1444 |
+
{
|
1445 |
+
"epoch": 0.39,
|
1446 |
+
"learning_rate": 1e-05,
|
1447 |
+
"loss": 1.2567,
|
1448 |
+
"step": 2400
|
1449 |
+
},
|
1450 |
+
{
|
1451 |
+
"epoch": 0.39,
|
1452 |
+
"learning_rate": 1e-05,
|
1453 |
+
"loss": 1.3259,
|
1454 |
+
"step": 2410
|
1455 |
+
},
|
1456 |
+
{
|
1457 |
+
"epoch": 0.4,
|
1458 |
+
"learning_rate": 1e-05,
|
1459 |
+
"loss": 1.3074,
|
1460 |
+
"step": 2420
|
1461 |
+
},
|
1462 |
+
{
|
1463 |
+
"epoch": 0.4,
|
1464 |
+
"learning_rate": 1e-05,
|
1465 |
+
"loss": 1.2679,
|
1466 |
+
"step": 2430
|
1467 |
+
},
|
1468 |
+
{
|
1469 |
+
"epoch": 0.4,
|
1470 |
+
"learning_rate": 1e-05,
|
1471 |
+
"loss": 1.2891,
|
1472 |
+
"step": 2440
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 0.4,
|
1476 |
+
"learning_rate": 1e-05,
|
1477 |
+
"loss": 1.2942,
|
1478 |
+
"step": 2450
|
1479 |
+
},
|
1480 |
+
{
|
1481 |
+
"epoch": 0.4,
|
1482 |
+
"learning_rate": 1e-05,
|
1483 |
+
"loss": 1.309,
|
1484 |
+
"step": 2460
|
1485 |
+
},
|
1486 |
+
{
|
1487 |
+
"epoch": 0.4,
|
1488 |
+
"learning_rate": 1e-05,
|
1489 |
+
"loss": 1.2833,
|
1490 |
+
"step": 2470
|
1491 |
+
},
|
1492 |
+
{
|
1493 |
+
"epoch": 0.41,
|
1494 |
+
"learning_rate": 1e-05,
|
1495 |
+
"loss": 1.2876,
|
1496 |
+
"step": 2480
|
1497 |
+
},
|
1498 |
+
{
|
1499 |
+
"epoch": 0.41,
|
1500 |
+
"learning_rate": 1e-05,
|
1501 |
+
"loss": 1.3055,
|
1502 |
+
"step": 2490
|
1503 |
+
},
|
1504 |
+
{
|
1505 |
+
"epoch": 0.41,
|
1506 |
+
"learning_rate": 1e-05,
|
1507 |
+
"loss": 1.2866,
|
1508 |
+
"step": 2500
|
1509 |
+
},
|
1510 |
+
{
|
1511 |
+
"epoch": 0.41,
|
1512 |
+
"learning_rate": 1e-05,
|
1513 |
+
"loss": 1.2896,
|
1514 |
+
"step": 2510
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 0.41,
|
1518 |
+
"learning_rate": 1e-05,
|
1519 |
+
"loss": 1.2554,
|
1520 |
+
"step": 2520
|
1521 |
+
},
|
1522 |
+
{
|
1523 |
+
"epoch": 0.41,
|
1524 |
+
"learning_rate": 1e-05,
|
1525 |
+
"loss": 1.3605,
|
1526 |
+
"step": 2530
|
1527 |
+
},
|
1528 |
+
{
|
1529 |
+
"epoch": 0.42,
|
1530 |
+
"learning_rate": 1e-05,
|
1531 |
+
"loss": 1.2808,
|
1532 |
+
"step": 2540
|
1533 |
+
},
|
1534 |
+
{
|
1535 |
+
"epoch": 0.42,
|
1536 |
+
"learning_rate": 1e-05,
|
1537 |
+
"loss": 1.3809,
|
1538 |
+
"step": 2550
|
1539 |
+
},
|
1540 |
+
{
|
1541 |
+
"epoch": 0.42,
|
1542 |
+
"learning_rate": 1e-05,
|
1543 |
+
"loss": 1.2405,
|
1544 |
+
"step": 2560
|
1545 |
+
},
|
1546 |
+
{
|
1547 |
+
"epoch": 0.42,
|
1548 |
+
"learning_rate": 1e-05,
|
1549 |
+
"loss": 1.3486,
|
1550 |
+
"step": 2570
|
1551 |
+
},
|
1552 |
+
{
|
1553 |
+
"epoch": 0.42,
|
1554 |
+
"learning_rate": 1e-05,
|
1555 |
+
"loss": 1.2717,
|
1556 |
+
"step": 2580
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 0.42,
|
1560 |
+
"learning_rate": 1e-05,
|
1561 |
+
"loss": 1.2951,
|
1562 |
+
"step": 2590
|
1563 |
+
},
|
1564 |
+
{
|
1565 |
+
"epoch": 0.43,
|
1566 |
+
"learning_rate": 1e-05,
|
1567 |
+
"loss": 1.3206,
|
1568 |
+
"step": 2600
|
1569 |
+
},
|
1570 |
+
{
|
1571 |
+
"epoch": 0.43,
|
1572 |
+
"learning_rate": 1e-05,
|
1573 |
+
"loss": 1.2649,
|
1574 |
+
"step": 2610
|
1575 |
+
},
|
1576 |
+
{
|
1577 |
+
"epoch": 0.43,
|
1578 |
+
"learning_rate": 1e-05,
|
1579 |
+
"loss": 1.3111,
|
1580 |
+
"step": 2620
|
1581 |
+
},
|
1582 |
+
{
|
1583 |
+
"epoch": 0.43,
|
1584 |
+
"learning_rate": 1e-05,
|
1585 |
+
"loss": 1.3412,
|
1586 |
+
"step": 2630
|
1587 |
+
},
|
1588 |
+
{
|
1589 |
+
"epoch": 0.43,
|
1590 |
+
"learning_rate": 1e-05,
|
1591 |
+
"loss": 1.3971,
|
1592 |
+
"step": 2640
|
1593 |
+
},
|
1594 |
+
{
|
1595 |
+
"epoch": 0.43,
|
1596 |
+
"learning_rate": 1e-05,
|
1597 |
+
"loss": 1.2913,
|
1598 |
+
"step": 2650
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 0.44,
|
1602 |
+
"learning_rate": 1e-05,
|
1603 |
+
"loss": 1.3284,
|
1604 |
+
"step": 2660
|
1605 |
+
},
|
1606 |
+
{
|
1607 |
+
"epoch": 0.44,
|
1608 |
+
"learning_rate": 1e-05,
|
1609 |
+
"loss": 1.233,
|
1610 |
+
"step": 2670
|
1611 |
+
},
|
1612 |
+
{
|
1613 |
+
"epoch": 0.44,
|
1614 |
+
"learning_rate": 1e-05,
|
1615 |
+
"loss": 1.2013,
|
1616 |
+
"step": 2680
|
1617 |
+
},
|
1618 |
+
{
|
1619 |
+
"epoch": 0.44,
|
1620 |
+
"learning_rate": 1e-05,
|
1621 |
+
"loss": 1.3606,
|
1622 |
+
"step": 2690
|
1623 |
+
},
|
1624 |
+
{
|
1625 |
+
"epoch": 0.44,
|
1626 |
+
"learning_rate": 1e-05,
|
1627 |
+
"loss": 1.3042,
|
1628 |
+
"step": 2700
|
1629 |
+
},
|
1630 |
+
{
|
1631 |
+
"epoch": 0.44,
|
1632 |
+
"learning_rate": 1e-05,
|
1633 |
+
"loss": 1.3331,
|
1634 |
+
"step": 2710
|
1635 |
+
},
|
1636 |
+
{
|
1637 |
+
"epoch": 0.45,
|
1638 |
+
"learning_rate": 1e-05,
|
1639 |
+
"loss": 1.3148,
|
1640 |
+
"step": 2720
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 0.45,
|
1644 |
+
"learning_rate": 1e-05,
|
1645 |
+
"loss": 1.2421,
|
1646 |
+
"step": 2730
|
1647 |
+
},
|
1648 |
+
{
|
1649 |
+
"epoch": 0.45,
|
1650 |
+
"learning_rate": 1e-05,
|
1651 |
+
"loss": 1.3807,
|
1652 |
+
"step": 2740
|
1653 |
+
},
|
1654 |
+
{
|
1655 |
+
"epoch": 0.45,
|
1656 |
+
"learning_rate": 1e-05,
|
1657 |
+
"loss": 1.3048,
|
1658 |
+
"step": 2750
|
1659 |
+
},
|
1660 |
+
{
|
1661 |
+
"epoch": 0.45,
|
1662 |
+
"learning_rate": 1e-05,
|
1663 |
+
"loss": 1.3048,
|
1664 |
+
"step": 2760
|
1665 |
+
},
|
1666 |
+
{
|
1667 |
+
"epoch": 0.45,
|
1668 |
+
"learning_rate": 1e-05,
|
1669 |
+
"loss": 1.3163,
|
1670 |
+
"step": 2770
|
1671 |
+
},
|
1672 |
+
{
|
1673 |
+
"epoch": 0.46,
|
1674 |
+
"learning_rate": 1e-05,
|
1675 |
+
"loss": 1.2634,
|
1676 |
+
"step": 2780
|
1677 |
+
},
|
1678 |
+
{
|
1679 |
+
"epoch": 0.46,
|
1680 |
+
"learning_rate": 1e-05,
|
1681 |
+
"loss": 1.36,
|
1682 |
+
"step": 2790
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 0.46,
|
1686 |
+
"learning_rate": 1e-05,
|
1687 |
+
"loss": 1.2809,
|
1688 |
+
"step": 2800
|
1689 |
+
},
|
1690 |
+
{
|
1691 |
+
"epoch": 0.46,
|
1692 |
+
"learning_rate": 1e-05,
|
1693 |
+
"loss": 1.283,
|
1694 |
+
"step": 2810
|
1695 |
+
},
|
1696 |
+
{
|
1697 |
+
"epoch": 0.46,
|
1698 |
+
"learning_rate": 1e-05,
|
1699 |
+
"loss": 1.3317,
|
1700 |
+
"step": 2820
|
1701 |
+
},
|
1702 |
+
{
|
1703 |
+
"epoch": 0.46,
|
1704 |
+
"learning_rate": 1e-05,
|
1705 |
+
"loss": 1.3165,
|
1706 |
+
"step": 2830
|
1707 |
+
},
|
1708 |
+
{
|
1709 |
+
"epoch": 0.47,
|
1710 |
+
"learning_rate": 1e-05,
|
1711 |
+
"loss": 1.3155,
|
1712 |
+
"step": 2840
|
1713 |
+
},
|
1714 |
+
{
|
1715 |
+
"epoch": 0.47,
|
1716 |
+
"learning_rate": 1e-05,
|
1717 |
+
"loss": 1.1975,
|
1718 |
+
"step": 2850
|
1719 |
+
},
|
1720 |
+
{
|
1721 |
+
"epoch": 0.47,
|
1722 |
+
"learning_rate": 1e-05,
|
1723 |
+
"loss": 1.1896,
|
1724 |
+
"step": 2860
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 0.47,
|
1728 |
+
"learning_rate": 1e-05,
|
1729 |
+
"loss": 1.208,
|
1730 |
+
"step": 2870
|
1731 |
+
},
|
1732 |
+
{
|
1733 |
+
"epoch": 0.47,
|
1734 |
+
"learning_rate": 1e-05,
|
1735 |
+
"loss": 1.2704,
|
1736 |
+
"step": 2880
|
1737 |
+
},
|
1738 |
+
{
|
1739 |
+
"epoch": 0.47,
|
1740 |
+
"learning_rate": 1e-05,
|
1741 |
+
"loss": 1.2951,
|
1742 |
+
"step": 2890
|
1743 |
+
},
|
1744 |
+
{
|
1745 |
+
"epoch": 0.48,
|
1746 |
+
"learning_rate": 1e-05,
|
1747 |
+
"loss": 1.1931,
|
1748 |
+
"step": 2900
|
1749 |
+
},
|
1750 |
+
{
|
1751 |
+
"epoch": 0.48,
|
1752 |
+
"learning_rate": 1e-05,
|
1753 |
+
"loss": 1.2505,
|
1754 |
+
"step": 2910
|
1755 |
+
},
|
1756 |
+
{
|
1757 |
+
"epoch": 0.48,
|
1758 |
+
"learning_rate": 1e-05,
|
1759 |
+
"loss": 1.2654,
|
1760 |
+
"step": 2920
|
1761 |
+
},
|
1762 |
+
{
|
1763 |
+
"epoch": 0.48,
|
1764 |
+
"learning_rate": 1e-05,
|
1765 |
+
"loss": 1.378,
|
1766 |
+
"step": 2930
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 0.48,
|
1770 |
+
"learning_rate": 1e-05,
|
1771 |
+
"loss": 1.3106,
|
1772 |
+
"step": 2940
|
1773 |
+
},
|
1774 |
+
{
|
1775 |
+
"epoch": 0.48,
|
1776 |
+
"learning_rate": 1e-05,
|
1777 |
+
"loss": 1.2436,
|
1778 |
+
"step": 2950
|
1779 |
+
},
|
1780 |
+
{
|
1781 |
+
"epoch": 0.48,
|
1782 |
+
"learning_rate": 1e-05,
|
1783 |
+
"loss": 1.3263,
|
1784 |
+
"step": 2960
|
1785 |
+
},
|
1786 |
+
{
|
1787 |
+
"epoch": 0.49,
|
1788 |
+
"learning_rate": 1e-05,
|
1789 |
+
"loss": 1.315,
|
1790 |
+
"step": 2970
|
1791 |
+
},
|
1792 |
+
{
|
1793 |
+
"epoch": 0.49,
|
1794 |
+
"learning_rate": 1e-05,
|
1795 |
+
"loss": 1.3096,
|
1796 |
+
"step": 2980
|
1797 |
+
},
|
1798 |
+
{
|
1799 |
+
"epoch": 0.49,
|
1800 |
+
"learning_rate": 1e-05,
|
1801 |
+
"loss": 1.3328,
|
1802 |
+
"step": 2990
|
1803 |
+
},
|
1804 |
+
{
|
1805 |
+
"epoch": 0.49,
|
1806 |
+
"learning_rate": 1e-05,
|
1807 |
+
"loss": 1.273,
|
1808 |
+
"step": 3000
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 0.49,
|
1812 |
+
"learning_rate": 1e-05,
|
1813 |
+
"loss": 1.2463,
|
1814 |
+
"step": 3010
|
1815 |
+
},
|
1816 |
+
{
|
1817 |
+
"epoch": 0.49,
|
1818 |
+
"learning_rate": 1e-05,
|
1819 |
+
"loss": 1.313,
|
1820 |
+
"step": 3020
|
1821 |
+
},
|
1822 |
+
{
|
1823 |
+
"epoch": 0.5,
|
1824 |
+
"learning_rate": 1e-05,
|
1825 |
+
"loss": 1.2886,
|
1826 |
+
"step": 3030
|
1827 |
+
},
|
1828 |
+
{
|
1829 |
+
"epoch": 0.5,
|
1830 |
+
"learning_rate": 1e-05,
|
1831 |
+
"loss": 1.2971,
|
1832 |
+
"step": 3040
|
1833 |
+
},
|
1834 |
+
{
|
1835 |
+
"epoch": 0.5,
|
1836 |
+
"learning_rate": 1e-05,
|
1837 |
+
"loss": 1.3871,
|
1838 |
+
"step": 3050
|
1839 |
+
},
|
1840 |
+
{
|
1841 |
+
"epoch": 0.5,
|
1842 |
+
"learning_rate": 1e-05,
|
1843 |
+
"loss": 1.2677,
|
1844 |
+
"step": 3060
|
1845 |
+
},
|
1846 |
+
{
|
1847 |
+
"epoch": 0.5,
|
1848 |
+
"learning_rate": 1e-05,
|
1849 |
+
"loss": 1.3094,
|
1850 |
+
"step": 3070
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 0.5,
|
1854 |
+
"learning_rate": 1e-05,
|
1855 |
+
"loss": 1.2652,
|
1856 |
+
"step": 3080
|
1857 |
+
},
|
1858 |
+
{
|
1859 |
+
"epoch": 0.51,
|
1860 |
+
"learning_rate": 1e-05,
|
1861 |
+
"loss": 1.2308,
|
1862 |
+
"step": 3090
|
1863 |
+
},
|
1864 |
+
{
|
1865 |
+
"epoch": 0.51,
|
1866 |
+
"learning_rate": 1e-05,
|
1867 |
+
"loss": 1.3286,
|
1868 |
+
"step": 3100
|
1869 |
+
},
|
1870 |
+
{
|
1871 |
+
"epoch": 0.51,
|
1872 |
+
"learning_rate": 1e-05,
|
1873 |
+
"loss": 1.2933,
|
1874 |
+
"step": 3110
|
1875 |
+
},
|
1876 |
+
{
|
1877 |
+
"epoch": 0.51,
|
1878 |
+
"learning_rate": 1e-05,
|
1879 |
+
"loss": 1.2355,
|
1880 |
+
"step": 3120
|
1881 |
+
},
|
1882 |
+
{
|
1883 |
+
"epoch": 0.51,
|
1884 |
+
"learning_rate": 1e-05,
|
1885 |
+
"loss": 1.3138,
|
1886 |
+
"step": 3130
|
1887 |
+
},
|
1888 |
+
{
|
1889 |
+
"epoch": 0.51,
|
1890 |
+
"learning_rate": 1e-05,
|
1891 |
+
"loss": 1.2825,
|
1892 |
+
"step": 3140
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 0.52,
|
1896 |
+
"learning_rate": 1e-05,
|
1897 |
+
"loss": 1.258,
|
1898 |
+
"step": 3150
|
1899 |
+
},
|
1900 |
+
{
|
1901 |
+
"epoch": 0.52,
|
1902 |
+
"learning_rate": 1e-05,
|
1903 |
+
"loss": 1.2926,
|
1904 |
+
"step": 3160
|
1905 |
+
},
|
1906 |
+
{
|
1907 |
+
"epoch": 0.52,
|
1908 |
+
"learning_rate": 1e-05,
|
1909 |
+
"loss": 1.3267,
|
1910 |
+
"step": 3170
|
1911 |
+
},
|
1912 |
+
{
|
1913 |
+
"epoch": 0.52,
|
1914 |
+
"learning_rate": 1e-05,
|
1915 |
+
"loss": 1.334,
|
1916 |
+
"step": 3180
|
1917 |
+
},
|
1918 |
+
{
|
1919 |
+
"epoch": 0.52,
|
1920 |
+
"learning_rate": 1e-05,
|
1921 |
+
"loss": 1.2268,
|
1922 |
+
"step": 3190
|
1923 |
+
},
|
1924 |
+
{
|
1925 |
+
"epoch": 0.52,
|
1926 |
+
"learning_rate": 1e-05,
|
1927 |
+
"loss": 1.3248,
|
1928 |
+
"step": 3200
|
1929 |
+
},
|
1930 |
+
{
|
1931 |
+
"epoch": 0.53,
|
1932 |
+
"learning_rate": 1e-05,
|
1933 |
+
"loss": 1.2997,
|
1934 |
+
"step": 3210
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 0.53,
|
1938 |
+
"learning_rate": 1e-05,
|
1939 |
+
"loss": 1.259,
|
1940 |
+
"step": 3220
|
1941 |
+
},
|
1942 |
+
{
|
1943 |
+
"epoch": 0.53,
|
1944 |
+
"learning_rate": 1e-05,
|
1945 |
+
"loss": 1.3282,
|
1946 |
+
"step": 3230
|
1947 |
+
},
|
1948 |
+
{
|
1949 |
+
"epoch": 0.53,
|
1950 |
+
"learning_rate": 1e-05,
|
1951 |
+
"loss": 1.2567,
|
1952 |
+
"step": 3240
|
1953 |
+
},
|
1954 |
+
{
|
1955 |
+
"epoch": 0.53,
|
1956 |
+
"learning_rate": 1e-05,
|
1957 |
+
"loss": 1.3052,
|
1958 |
+
"step": 3250
|
1959 |
+
},
|
1960 |
+
{
|
1961 |
+
"epoch": 0.53,
|
1962 |
+
"learning_rate": 1e-05,
|
1963 |
+
"loss": 1.2964,
|
1964 |
+
"step": 3260
|
1965 |
+
},
|
1966 |
+
{
|
1967 |
+
"epoch": 0.54,
|
1968 |
+
"learning_rate": 1e-05,
|
1969 |
+
"loss": 1.2399,
|
1970 |
+
"step": 3270
|
1971 |
+
},
|
1972 |
+
{
|
1973 |
+
"epoch": 0.54,
|
1974 |
+
"learning_rate": 1e-05,
|
1975 |
+
"loss": 1.2876,
|
1976 |
+
"step": 3280
|
1977 |
+
},
|
1978 |
+
{
|
1979 |
+
"epoch": 0.54,
|
1980 |
+
"learning_rate": 1e-05,
|
1981 |
+
"loss": 1.2853,
|
1982 |
+
"step": 3290
|
1983 |
+
},
|
1984 |
+
{
|
1985 |
+
"epoch": 0.54,
|
1986 |
+
"learning_rate": 1e-05,
|
1987 |
+
"loss": 1.3239,
|
1988 |
+
"step": 3300
|
1989 |
+
},
|
1990 |
+
{
|
1991 |
+
"epoch": 0.54,
|
1992 |
+
"learning_rate": 1e-05,
|
1993 |
+
"loss": 1.2694,
|
1994 |
+
"step": 3310
|
1995 |
+
},
|
1996 |
+
{
|
1997 |
+
"epoch": 0.54,
|
1998 |
+
"learning_rate": 1e-05,
|
1999 |
+
"loss": 1.3172,
|
2000 |
+
"step": 3320
|
2001 |
+
},
|
2002 |
+
{
|
2003 |
+
"epoch": 0.55,
|
2004 |
+
"learning_rate": 1e-05,
|
2005 |
+
"loss": 1.2988,
|
2006 |
+
"step": 3330
|
2007 |
+
},
|
2008 |
+
{
|
2009 |
+
"epoch": 0.55,
|
2010 |
+
"learning_rate": 1e-05,
|
2011 |
+
"loss": 1.246,
|
2012 |
+
"step": 3340
|
2013 |
+
},
|
2014 |
+
{
|
2015 |
+
"epoch": 0.55,
|
2016 |
+
"learning_rate": 1e-05,
|
2017 |
+
"loss": 1.302,
|
2018 |
+
"step": 3350
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 0.55,
|
2022 |
+
"learning_rate": 1e-05,
|
2023 |
+
"loss": 1.2601,
|
2024 |
+
"step": 3360
|
2025 |
+
},
|
2026 |
+
{
|
2027 |
+
"epoch": 0.55,
|
2028 |
+
"learning_rate": 1e-05,
|
2029 |
+
"loss": 1.3388,
|
2030 |
+
"step": 3370
|
2031 |
+
},
|
2032 |
+
{
|
2033 |
+
"epoch": 0.55,
|
2034 |
+
"learning_rate": 1e-05,
|
2035 |
+
"loss": 1.1941,
|
2036 |
+
"step": 3380
|
2037 |
+
},
|
2038 |
+
{
|
2039 |
+
"epoch": 0.56,
|
2040 |
+
"learning_rate": 1e-05,
|
2041 |
+
"loss": 1.1759,
|
2042 |
+
"step": 3390
|
2043 |
+
},
|
2044 |
+
{
|
2045 |
+
"epoch": 0.56,
|
2046 |
+
"learning_rate": 1e-05,
|
2047 |
+
"loss": 1.2403,
|
2048 |
+
"step": 3400
|
2049 |
+
},
|
2050 |
+
{
|
2051 |
+
"epoch": 0.56,
|
2052 |
+
"learning_rate": 1e-05,
|
2053 |
+
"loss": 1.2024,
|
2054 |
+
"step": 3410
|
2055 |
+
},
|
2056 |
+
{
|
2057 |
+
"epoch": 0.56,
|
2058 |
+
"learning_rate": 1e-05,
|
2059 |
+
"loss": 1.2752,
|
2060 |
+
"step": 3420
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 0.56,
|
2064 |
+
"learning_rate": 1e-05,
|
2065 |
+
"loss": 1.2273,
|
2066 |
+
"step": 3430
|
2067 |
+
},
|
2068 |
+
{
|
2069 |
+
"epoch": 0.56,
|
2070 |
+
"learning_rate": 1e-05,
|
2071 |
+
"loss": 1.2261,
|
2072 |
+
"step": 3440
|
2073 |
+
},
|
2074 |
+
{
|
2075 |
+
"epoch": 0.57,
|
2076 |
+
"learning_rate": 1e-05,
|
2077 |
+
"loss": 1.2652,
|
2078 |
+
"step": 3450
|
2079 |
+
},
|
2080 |
+
{
|
2081 |
+
"epoch": 0.57,
|
2082 |
+
"learning_rate": 1e-05,
|
2083 |
+
"loss": 1.3601,
|
2084 |
+
"step": 3460
|
2085 |
+
},
|
2086 |
+
{
|
2087 |
+
"epoch": 0.57,
|
2088 |
+
"learning_rate": 1e-05,
|
2089 |
+
"loss": 1.3543,
|
2090 |
+
"step": 3470
|
2091 |
+
},
|
2092 |
+
{
|
2093 |
+
"epoch": 0.57,
|
2094 |
+
"learning_rate": 1e-05,
|
2095 |
+
"loss": 1.3679,
|
2096 |
+
"step": 3480
|
2097 |
+
},
|
2098 |
+
{
|
2099 |
+
"epoch": 0.57,
|
2100 |
+
"learning_rate": 1e-05,
|
2101 |
+
"loss": 1.2009,
|
2102 |
+
"step": 3490
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 0.57,
|
2106 |
+
"learning_rate": 1e-05,
|
2107 |
+
"loss": 1.2414,
|
2108 |
+
"step": 3500
|
2109 |
+
},
|
2110 |
+
{
|
2111 |
+
"epoch": 0.57,
|
2112 |
+
"learning_rate": 1e-05,
|
2113 |
+
"loss": 1.1929,
|
2114 |
+
"step": 3510
|
2115 |
+
},
|
2116 |
+
{
|
2117 |
+
"epoch": 0.58,
|
2118 |
+
"learning_rate": 1e-05,
|
2119 |
+
"loss": 1.2947,
|
2120 |
+
"step": 3520
|
2121 |
+
},
|
2122 |
+
{
|
2123 |
+
"epoch": 0.58,
|
2124 |
+
"learning_rate": 1e-05,
|
2125 |
+
"loss": 1.2843,
|
2126 |
+
"step": 3530
|
2127 |
+
},
|
2128 |
+
{
|
2129 |
+
"epoch": 0.58,
|
2130 |
+
"learning_rate": 1e-05,
|
2131 |
+
"loss": 1.2223,
|
2132 |
+
"step": 3540
|
2133 |
+
},
|
2134 |
+
{
|
2135 |
+
"epoch": 0.58,
|
2136 |
+
"learning_rate": 1e-05,
|
2137 |
+
"loss": 1.2569,
|
2138 |
+
"step": 3550
|
2139 |
+
},
|
2140 |
+
{
|
2141 |
+
"epoch": 0.58,
|
2142 |
+
"learning_rate": 1e-05,
|
2143 |
+
"loss": 1.1927,
|
2144 |
+
"step": 3560
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 0.58,
|
2148 |
+
"learning_rate": 1e-05,
|
2149 |
+
"loss": 1.3239,
|
2150 |
+
"step": 3570
|
2151 |
+
},
|
2152 |
+
{
|
2153 |
+
"epoch": 0.59,
|
2154 |
+
"learning_rate": 1e-05,
|
2155 |
+
"loss": 1.3273,
|
2156 |
+
"step": 3580
|
2157 |
+
},
|
2158 |
+
{
|
2159 |
+
"epoch": 0.59,
|
2160 |
+
"learning_rate": 1e-05,
|
2161 |
+
"loss": 1.2522,
|
2162 |
+
"step": 3590
|
2163 |
+
},
|
2164 |
+
{
|
2165 |
+
"epoch": 0.59,
|
2166 |
+
"learning_rate": 1e-05,
|
2167 |
+
"loss": 1.3084,
|
2168 |
+
"step": 3600
|
2169 |
+
},
|
2170 |
+
{
|
2171 |
+
"epoch": 0.59,
|
2172 |
+
"learning_rate": 1e-05,
|
2173 |
+
"loss": 1.2368,
|
2174 |
+
"step": 3610
|
2175 |
+
},
|
2176 |
+
{
|
2177 |
+
"epoch": 0.59,
|
2178 |
+
"learning_rate": 1e-05,
|
2179 |
+
"loss": 1.2644,
|
2180 |
+
"step": 3620
|
2181 |
+
},
|
2182 |
+
{
|
2183 |
+
"epoch": 0.59,
|
2184 |
+
"learning_rate": 1e-05,
|
2185 |
+
"loss": 1.2636,
|
2186 |
+
"step": 3630
|
2187 |
+
},
|
2188 |
+
{
|
2189 |
+
"epoch": 0.6,
|
2190 |
+
"learning_rate": 1e-05,
|
2191 |
+
"loss": 1.2676,
|
2192 |
+
"step": 3640
|
2193 |
+
},
|
2194 |
+
{
|
2195 |
+
"epoch": 0.6,
|
2196 |
+
"learning_rate": 1e-05,
|
2197 |
+
"loss": 1.2844,
|
2198 |
+
"step": 3650
|
2199 |
+
},
|
2200 |
+
{
|
2201 |
+
"epoch": 0.6,
|
2202 |
+
"learning_rate": 1e-05,
|
2203 |
+
"loss": 1.3151,
|
2204 |
+
"step": 3660
|
2205 |
+
},
|
2206 |
+
{
|
2207 |
+
"epoch": 0.6,
|
2208 |
+
"learning_rate": 1e-05,
|
2209 |
+
"loss": 1.2261,
|
2210 |
+
"step": 3670
|
2211 |
+
},
|
2212 |
+
{
|
2213 |
+
"epoch": 0.6,
|
2214 |
+
"learning_rate": 1e-05,
|
2215 |
+
"loss": 1.2124,
|
2216 |
+
"step": 3680
|
2217 |
+
},
|
2218 |
+
{
|
2219 |
+
"epoch": 0.6,
|
2220 |
+
"learning_rate": 1e-05,
|
2221 |
+
"loss": 1.2555,
|
2222 |
+
"step": 3690
|
2223 |
+
},
|
2224 |
+
{
|
2225 |
+
"epoch": 0.61,
|
2226 |
+
"learning_rate": 1e-05,
|
2227 |
+
"loss": 1.2169,
|
2228 |
+
"step": 3700
|
2229 |
+
},
|
2230 |
+
{
|
2231 |
+
"epoch": 0.61,
|
2232 |
+
"learning_rate": 1e-05,
|
2233 |
+
"loss": 1.3497,
|
2234 |
+
"step": 3710
|
2235 |
+
},
|
2236 |
+
{
|
2237 |
+
"epoch": 0.61,
|
2238 |
+
"learning_rate": 1e-05,
|
2239 |
+
"loss": 1.2615,
|
2240 |
+
"step": 3720
|
2241 |
+
},
|
2242 |
+
{
|
2243 |
+
"epoch": 0.61,
|
2244 |
+
"learning_rate": 1e-05,
|
2245 |
+
"loss": 1.28,
|
2246 |
+
"step": 3730
|
2247 |
+
},
|
2248 |
+
{
|
2249 |
+
"epoch": 0.61,
|
2250 |
+
"learning_rate": 1e-05,
|
2251 |
+
"loss": 1.2943,
|
2252 |
+
"step": 3740
|
2253 |
+
},
|
2254 |
+
{
|
2255 |
+
"epoch": 0.61,
|
2256 |
+
"learning_rate": 1e-05,
|
2257 |
+
"loss": 1.2596,
|
2258 |
+
"step": 3750
|
2259 |
+
},
|
2260 |
+
{
|
2261 |
+
"epoch": 0.62,
|
2262 |
+
"learning_rate": 1e-05,
|
2263 |
+
"loss": 1.2416,
|
2264 |
+
"step": 3760
|
2265 |
+
},
|
2266 |
+
{
|
2267 |
+
"epoch": 0.62,
|
2268 |
+
"learning_rate": 1e-05,
|
2269 |
+
"loss": 1.2909,
|
2270 |
+
"step": 3770
|
2271 |
+
},
|
2272 |
+
{
|
2273 |
+
"epoch": 0.62,
|
2274 |
+
"learning_rate": 1e-05,
|
2275 |
+
"loss": 1.2281,
|
2276 |
+
"step": 3780
|
2277 |
+
},
|
2278 |
+
{
|
2279 |
+
"epoch": 0.62,
|
2280 |
+
"learning_rate": 1e-05,
|
2281 |
+
"loss": 1.2071,
|
2282 |
+
"step": 3790
|
2283 |
+
},
|
2284 |
+
{
|
2285 |
+
"epoch": 0.62,
|
2286 |
+
"learning_rate": 1e-05,
|
2287 |
+
"loss": 1.279,
|
2288 |
+
"step": 3800
|
2289 |
+
},
|
2290 |
+
{
|
2291 |
+
"epoch": 0.62,
|
2292 |
+
"learning_rate": 1e-05,
|
2293 |
+
"loss": 1.2921,
|
2294 |
+
"step": 3810
|
2295 |
+
},
|
2296 |
+
{
|
2297 |
+
"epoch": 0.63,
|
2298 |
+
"learning_rate": 1e-05,
|
2299 |
+
"loss": 1.2398,
|
2300 |
+
"step": 3820
|
2301 |
+
},
|
2302 |
+
{
|
2303 |
+
"epoch": 0.63,
|
2304 |
+
"learning_rate": 1e-05,
|
2305 |
+
"loss": 1.2424,
|
2306 |
+
"step": 3830
|
2307 |
+
},
|
2308 |
+
{
|
2309 |
+
"epoch": 0.63,
|
2310 |
+
"learning_rate": 1e-05,
|
2311 |
+
"loss": 1.2615,
|
2312 |
+
"step": 3840
|
2313 |
+
},
|
2314 |
+
{
|
2315 |
+
"epoch": 0.63,
|
2316 |
+
"learning_rate": 1e-05,
|
2317 |
+
"loss": 1.3171,
|
2318 |
+
"step": 3850
|
2319 |
+
},
|
2320 |
+
{
|
2321 |
+
"epoch": 0.63,
|
2322 |
+
"learning_rate": 1e-05,
|
2323 |
+
"loss": 1.3122,
|
2324 |
+
"step": 3860
|
2325 |
+
},
|
2326 |
+
{
|
2327 |
+
"epoch": 0.63,
|
2328 |
+
"learning_rate": 1e-05,
|
2329 |
+
"loss": 1.2333,
|
2330 |
+
"step": 3870
|
2331 |
+
},
|
2332 |
+
{
|
2333 |
+
"epoch": 0.64,
|
2334 |
+
"learning_rate": 1e-05,
|
2335 |
+
"loss": 1.3382,
|
2336 |
+
"step": 3880
|
2337 |
+
},
|
2338 |
+
{
|
2339 |
+
"epoch": 0.64,
|
2340 |
+
"learning_rate": 1e-05,
|
2341 |
+
"loss": 1.2945,
|
2342 |
+
"step": 3890
|
2343 |
+
},
|
2344 |
+
{
|
2345 |
+
"epoch": 0.64,
|
2346 |
+
"learning_rate": 1e-05,
|
2347 |
+
"loss": 1.2718,
|
2348 |
+
"step": 3900
|
2349 |
+
},
|
2350 |
+
{
|
2351 |
+
"epoch": 0.64,
|
2352 |
+
"learning_rate": 1e-05,
|
2353 |
+
"loss": 1.3351,
|
2354 |
+
"step": 3910
|
2355 |
+
},
|
2356 |
+
{
|
2357 |
+
"epoch": 0.64,
|
2358 |
+
"learning_rate": 1e-05,
|
2359 |
+
"loss": 1.2759,
|
2360 |
+
"step": 3920
|
2361 |
+
},
|
2362 |
+
{
|
2363 |
+
"epoch": 0.64,
|
2364 |
+
"learning_rate": 1e-05,
|
2365 |
+
"loss": 1.3349,
|
2366 |
+
"step": 3930
|
2367 |
+
},
|
2368 |
+
{
|
2369 |
+
"epoch": 0.65,
|
2370 |
+
"learning_rate": 1e-05,
|
2371 |
+
"loss": 1.2619,
|
2372 |
+
"step": 3940
|
2373 |
+
},
|
2374 |
+
{
|
2375 |
+
"epoch": 0.65,
|
2376 |
+
"learning_rate": 1e-05,
|
2377 |
+
"loss": 1.2832,
|
2378 |
+
"step": 3950
|
2379 |
+
},
|
2380 |
+
{
|
2381 |
+
"epoch": 0.65,
|
2382 |
+
"learning_rate": 1e-05,
|
2383 |
+
"loss": 1.2646,
|
2384 |
+
"step": 3960
|
2385 |
+
},
|
2386 |
+
{
|
2387 |
+
"epoch": 0.65,
|
2388 |
+
"learning_rate": 1e-05,
|
2389 |
+
"loss": 1.3354,
|
2390 |
+
"step": 3970
|
2391 |
+
},
|
2392 |
+
{
|
2393 |
+
"epoch": 0.65,
|
2394 |
+
"learning_rate": 1e-05,
|
2395 |
+
"loss": 1.3257,
|
2396 |
+
"step": 3980
|
2397 |
+
},
|
2398 |
+
{
|
2399 |
+
"epoch": 0.65,
|
2400 |
+
"learning_rate": 1e-05,
|
2401 |
+
"loss": 1.2637,
|
2402 |
+
"step": 3990
|
2403 |
+
},
|
2404 |
+
{
|
2405 |
+
"epoch": 0.66,
|
2406 |
+
"learning_rate": 1e-05,
|
2407 |
+
"loss": 1.3233,
|
2408 |
+
"step": 4000
|
2409 |
+
},
|
2410 |
+
{
|
2411 |
+
"epoch": 0.66,
|
2412 |
+
"learning_rate": 1e-05,
|
2413 |
+
"loss": 1.2305,
|
2414 |
+
"step": 4010
|
2415 |
+
},
|
2416 |
+
{
|
2417 |
+
"epoch": 0.66,
|
2418 |
+
"learning_rate": 1e-05,
|
2419 |
+
"loss": 1.3121,
|
2420 |
+
"step": 4020
|
2421 |
+
},
|
2422 |
+
{
|
2423 |
+
"epoch": 0.66,
|
2424 |
+
"learning_rate": 1e-05,
|
2425 |
+
"loss": 1.2502,
|
2426 |
+
"step": 4030
|
2427 |
+
},
|
2428 |
+
{
|
2429 |
+
"epoch": 0.66,
|
2430 |
+
"learning_rate": 1e-05,
|
2431 |
+
"loss": 1.3405,
|
2432 |
+
"step": 4040
|
2433 |
+
},
|
2434 |
+
{
|
2435 |
+
"epoch": 0.66,
|
2436 |
+
"learning_rate": 1e-05,
|
2437 |
+
"loss": 1.265,
|
2438 |
+
"step": 4050
|
2439 |
+
},
|
2440 |
+
{
|
2441 |
+
"epoch": 0.67,
|
2442 |
+
"learning_rate": 1e-05,
|
2443 |
+
"loss": 1.3124,
|
2444 |
+
"step": 4060
|
2445 |
+
},
|
2446 |
+
{
|
2447 |
+
"epoch": 0.67,
|
2448 |
+
"learning_rate": 1e-05,
|
2449 |
+
"loss": 1.2664,
|
2450 |
+
"step": 4070
|
2451 |
+
},
|
2452 |
+
{
|
2453 |
+
"epoch": 0.67,
|
2454 |
+
"learning_rate": 1e-05,
|
2455 |
+
"loss": 1.3427,
|
2456 |
+
"step": 4080
|
2457 |
+
},
|
2458 |
+
{
|
2459 |
+
"epoch": 0.67,
|
2460 |
+
"learning_rate": 1e-05,
|
2461 |
+
"loss": 1.2858,
|
2462 |
+
"step": 4090
|
2463 |
+
},
|
2464 |
+
{
|
2465 |
+
"epoch": 0.67,
|
2466 |
+
"learning_rate": 1e-05,
|
2467 |
+
"loss": 1.2414,
|
2468 |
+
"step": 4100
|
2469 |
+
},
|
2470 |
+
{
|
2471 |
+
"epoch": 0.67,
|
2472 |
+
"learning_rate": 1e-05,
|
2473 |
+
"loss": 1.1726,
|
2474 |
+
"step": 4110
|
2475 |
+
},
|
2476 |
+
{
|
2477 |
+
"epoch": 0.67,
|
2478 |
+
"learning_rate": 1e-05,
|
2479 |
+
"loss": 1.2786,
|
2480 |
+
"step": 4120
|
2481 |
+
},
|
2482 |
+
{
|
2483 |
+
"epoch": 0.68,
|
2484 |
+
"learning_rate": 1e-05,
|
2485 |
+
"loss": 1.2386,
|
2486 |
+
"step": 4130
|
2487 |
+
},
|
2488 |
+
{
|
2489 |
+
"epoch": 0.68,
|
2490 |
+
"learning_rate": 1e-05,
|
2491 |
+
"loss": 1.2194,
|
2492 |
+
"step": 4140
|
2493 |
+
},
|
2494 |
+
{
|
2495 |
+
"epoch": 0.68,
|
2496 |
+
"learning_rate": 1e-05,
|
2497 |
+
"loss": 1.3317,
|
2498 |
+
"step": 4150
|
2499 |
+
},
|
2500 |
+
{
|
2501 |
+
"epoch": 0.68,
|
2502 |
+
"learning_rate": 1e-05,
|
2503 |
+
"loss": 1.3069,
|
2504 |
+
"step": 4160
|
2505 |
+
},
|
2506 |
+
{
|
2507 |
+
"epoch": 0.68,
|
2508 |
+
"learning_rate": 1e-05,
|
2509 |
+
"loss": 1.182,
|
2510 |
+
"step": 4170
|
2511 |
+
},
|
2512 |
+
{
|
2513 |
+
"epoch": 0.68,
|
2514 |
+
"learning_rate": 1e-05,
|
2515 |
+
"loss": 1.2819,
|
2516 |
+
"step": 4180
|
2517 |
+
},
|
2518 |
+
{
|
2519 |
+
"epoch": 0.69,
|
2520 |
+
"learning_rate": 1e-05,
|
2521 |
+
"loss": 1.2253,
|
2522 |
+
"step": 4190
|
2523 |
+
},
|
2524 |
+
{
|
2525 |
+
"epoch": 0.69,
|
2526 |
+
"learning_rate": 1e-05,
|
2527 |
+
"loss": 1.2657,
|
2528 |
+
"step": 4200
|
2529 |
+
},
|
2530 |
+
{
|
2531 |
+
"epoch": 0.69,
|
2532 |
+
"learning_rate": 1e-05,
|
2533 |
+
"loss": 1.2418,
|
2534 |
+
"step": 4210
|
2535 |
+
},
|
2536 |
+
{
|
2537 |
+
"epoch": 0.69,
|
2538 |
+
"learning_rate": 1e-05,
|
2539 |
+
"loss": 1.2285,
|
2540 |
+
"step": 4220
|
2541 |
+
},
|
2542 |
+
{
|
2543 |
+
"epoch": 0.69,
|
2544 |
+
"learning_rate": 1e-05,
|
2545 |
+
"loss": 1.3214,
|
2546 |
+
"step": 4230
|
2547 |
+
},
|
2548 |
+
{
|
2549 |
+
"epoch": 0.69,
|
2550 |
+
"learning_rate": 1e-05,
|
2551 |
+
"loss": 1.2696,
|
2552 |
+
"step": 4240
|
2553 |
+
},
|
2554 |
+
{
|
2555 |
+
"epoch": 0.7,
|
2556 |
+
"learning_rate": 1e-05,
|
2557 |
+
"loss": 1.3138,
|
2558 |
+
"step": 4250
|
2559 |
+
},
|
2560 |
+
{
|
2561 |
+
"epoch": 0.7,
|
2562 |
+
"learning_rate": 1e-05,
|
2563 |
+
"loss": 1.2085,
|
2564 |
+
"step": 4260
|
2565 |
+
},
|
2566 |
+
{
|
2567 |
+
"epoch": 0.7,
|
2568 |
+
"learning_rate": 1e-05,
|
2569 |
+
"loss": 1.2584,
|
2570 |
+
"step": 4270
|
2571 |
+
},
|
2572 |
+
{
|
2573 |
+
"epoch": 0.7,
|
2574 |
+
"learning_rate": 1e-05,
|
2575 |
+
"loss": 1.2333,
|
2576 |
+
"step": 4280
|
2577 |
+
},
|
2578 |
+
{
|
2579 |
+
"epoch": 0.7,
|
2580 |
+
"learning_rate": 1e-05,
|
2581 |
+
"loss": 1.3303,
|
2582 |
+
"step": 4290
|
2583 |
+
},
|
2584 |
+
{
|
2585 |
+
"epoch": 0.7,
|
2586 |
+
"learning_rate": 1e-05,
|
2587 |
+
"loss": 1.2612,
|
2588 |
+
"step": 4300
|
2589 |
+
},
|
2590 |
+
{
|
2591 |
+
"epoch": 0.71,
|
2592 |
+
"learning_rate": 1e-05,
|
2593 |
+
"loss": 1.1736,
|
2594 |
+
"step": 4310
|
2595 |
+
},
|
2596 |
+
{
|
2597 |
+
"epoch": 0.71,
|
2598 |
+
"learning_rate": 1e-05,
|
2599 |
+
"loss": 1.2627,
|
2600 |
+
"step": 4320
|
2601 |
+
},
|
2602 |
+
{
|
2603 |
+
"epoch": 0.71,
|
2604 |
+
"learning_rate": 1e-05,
|
2605 |
+
"loss": 1.3033,
|
2606 |
+
"step": 4330
|
2607 |
+
},
|
2608 |
+
{
|
2609 |
+
"epoch": 0.71,
|
2610 |
+
"learning_rate": 1e-05,
|
2611 |
+
"loss": 1.2415,
|
2612 |
+
"step": 4340
|
2613 |
+
},
|
2614 |
+
{
|
2615 |
+
"epoch": 0.71,
|
2616 |
+
"learning_rate": 1e-05,
|
2617 |
+
"loss": 1.2739,
|
2618 |
+
"step": 4350
|
2619 |
+
},
|
2620 |
+
{
|
2621 |
+
"epoch": 0.71,
|
2622 |
+
"learning_rate": 1e-05,
|
2623 |
+
"loss": 1.2591,
|
2624 |
+
"step": 4360
|
2625 |
+
},
|
2626 |
+
{
|
2627 |
+
"epoch": 0.72,
|
2628 |
+
"learning_rate": 1e-05,
|
2629 |
+
"loss": 1.2699,
|
2630 |
+
"step": 4370
|
2631 |
+
},
|
2632 |
+
{
|
2633 |
+
"epoch": 0.72,
|
2634 |
+
"learning_rate": 1e-05,
|
2635 |
+
"loss": 1.3777,
|
2636 |
+
"step": 4380
|
2637 |
+
},
|
2638 |
+
{
|
2639 |
+
"epoch": 0.72,
|
2640 |
+
"learning_rate": 1e-05,
|
2641 |
+
"loss": 1.2144,
|
2642 |
+
"step": 4390
|
2643 |
+
},
|
2644 |
+
{
|
2645 |
+
"epoch": 0.72,
|
2646 |
+
"learning_rate": 1e-05,
|
2647 |
+
"loss": 1.3081,
|
2648 |
+
"step": 4400
|
2649 |
+
},
|
2650 |
+
{
|
2651 |
+
"epoch": 0.72,
|
2652 |
+
"learning_rate": 1e-05,
|
2653 |
+
"loss": 1.2445,
|
2654 |
+
"step": 4410
|
2655 |
+
},
|
2656 |
+
{
|
2657 |
+
"epoch": 0.72,
|
2658 |
+
"learning_rate": 1e-05,
|
2659 |
+
"loss": 1.1593,
|
2660 |
+
"step": 4420
|
2661 |
+
},
|
2662 |
+
{
|
2663 |
+
"epoch": 0.73,
|
2664 |
+
"learning_rate": 1e-05,
|
2665 |
+
"loss": 1.2987,
|
2666 |
+
"step": 4430
|
2667 |
+
},
|
2668 |
+
{
|
2669 |
+
"epoch": 0.73,
|
2670 |
+
"learning_rate": 1e-05,
|
2671 |
+
"loss": 1.2467,
|
2672 |
+
"step": 4440
|
2673 |
+
},
|
2674 |
+
{
|
2675 |
+
"epoch": 0.73,
|
2676 |
+
"learning_rate": 1e-05,
|
2677 |
+
"loss": 1.2139,
|
2678 |
+
"step": 4450
|
2679 |
+
},
|
2680 |
+
{
|
2681 |
+
"epoch": 0.73,
|
2682 |
+
"learning_rate": 1e-05,
|
2683 |
+
"loss": 1.2999,
|
2684 |
+
"step": 4460
|
2685 |
+
},
|
2686 |
+
{
|
2687 |
+
"epoch": 0.73,
|
2688 |
+
"learning_rate": 1e-05,
|
2689 |
+
"loss": 1.2681,
|
2690 |
+
"step": 4470
|
2691 |
+
},
|
2692 |
+
{
|
2693 |
+
"epoch": 0.73,
|
2694 |
+
"learning_rate": 1e-05,
|
2695 |
+
"loss": 1.3139,
|
2696 |
+
"step": 4480
|
2697 |
+
},
|
2698 |
+
{
|
2699 |
+
"epoch": 0.74,
|
2700 |
+
"learning_rate": 1e-05,
|
2701 |
+
"loss": 1.2685,
|
2702 |
+
"step": 4490
|
2703 |
+
},
|
2704 |
+
{
|
2705 |
+
"epoch": 0.74,
|
2706 |
+
"learning_rate": 1e-05,
|
2707 |
+
"loss": 1.3077,
|
2708 |
+
"step": 4500
|
2709 |
+
},
|
2710 |
+
{
|
2711 |
+
"epoch": 0.74,
|
2712 |
+
"learning_rate": 1e-05,
|
2713 |
+
"loss": 1.2559,
|
2714 |
+
"step": 4510
|
2715 |
+
},
|
2716 |
+
{
|
2717 |
+
"epoch": 0.74,
|
2718 |
+
"learning_rate": 1e-05,
|
2719 |
+
"loss": 1.2181,
|
2720 |
+
"step": 4520
|
2721 |
+
},
|
2722 |
+
{
|
2723 |
+
"epoch": 0.74,
|
2724 |
+
"learning_rate": 1e-05,
|
2725 |
+
"loss": 1.3011,
|
2726 |
+
"step": 4530
|
2727 |
+
},
|
2728 |
+
{
|
2729 |
+
"epoch": 0.74,
|
2730 |
+
"learning_rate": 1e-05,
|
2731 |
+
"loss": 1.3051,
|
2732 |
+
"step": 4540
|
2733 |
+
},
|
2734 |
+
{
|
2735 |
+
"epoch": 0.75,
|
2736 |
+
"learning_rate": 1e-05,
|
2737 |
+
"loss": 1.2037,
|
2738 |
+
"step": 4550
|
2739 |
+
},
|
2740 |
+
{
|
2741 |
+
"epoch": 0.75,
|
2742 |
+
"learning_rate": 1e-05,
|
2743 |
+
"loss": 1.2504,
|
2744 |
+
"step": 4560
|
2745 |
+
},
|
2746 |
+
{
|
2747 |
+
"epoch": 0.75,
|
2748 |
+
"learning_rate": 1e-05,
|
2749 |
+
"loss": 1.212,
|
2750 |
+
"step": 4570
|
2751 |
+
},
|
2752 |
+
{
|
2753 |
+
"epoch": 0.75,
|
2754 |
+
"learning_rate": 1e-05,
|
2755 |
+
"loss": 1.2554,
|
2756 |
+
"step": 4580
|
2757 |
+
},
|
2758 |
+
{
|
2759 |
+
"epoch": 0.75,
|
2760 |
+
"learning_rate": 1e-05,
|
2761 |
+
"loss": 1.2767,
|
2762 |
+
"step": 4590
|
2763 |
+
},
|
2764 |
+
{
|
2765 |
+
"epoch": 0.75,
|
2766 |
+
"learning_rate": 1e-05,
|
2767 |
+
"loss": 1.2845,
|
2768 |
+
"step": 4600
|
2769 |
+
},
|
2770 |
+
{
|
2771 |
+
"epoch": 0.76,
|
2772 |
+
"learning_rate": 1e-05,
|
2773 |
+
"loss": 1.2142,
|
2774 |
+
"step": 4610
|
2775 |
+
},
|
2776 |
+
{
|
2777 |
+
"epoch": 0.76,
|
2778 |
+
"learning_rate": 1e-05,
|
2779 |
+
"loss": 1.2353,
|
2780 |
+
"step": 4620
|
2781 |
+
},
|
2782 |
+
{
|
2783 |
+
"epoch": 0.76,
|
2784 |
+
"learning_rate": 1e-05,
|
2785 |
+
"loss": 1.2294,
|
2786 |
+
"step": 4630
|
2787 |
+
},
|
2788 |
+
{
|
2789 |
+
"epoch": 0.76,
|
2790 |
+
"learning_rate": 1e-05,
|
2791 |
+
"loss": 1.2984,
|
2792 |
+
"step": 4640
|
2793 |
+
},
|
2794 |
+
{
|
2795 |
+
"epoch": 0.76,
|
2796 |
+
"learning_rate": 1e-05,
|
2797 |
+
"loss": 1.279,
|
2798 |
+
"step": 4650
|
2799 |
+
},
|
2800 |
+
{
|
2801 |
+
"epoch": 0.76,
|
2802 |
+
"learning_rate": 1e-05,
|
2803 |
+
"loss": 1.2119,
|
2804 |
+
"step": 4660
|
2805 |
+
},
|
2806 |
+
{
|
2807 |
+
"epoch": 0.77,
|
2808 |
+
"learning_rate": 1e-05,
|
2809 |
+
"loss": 1.2493,
|
2810 |
+
"step": 4670
|
2811 |
+
},
|
2812 |
+
{
|
2813 |
+
"epoch": 0.77,
|
2814 |
+
"learning_rate": 1e-05,
|
2815 |
+
"loss": 1.1979,
|
2816 |
+
"step": 4680
|
2817 |
+
},
|
2818 |
+
{
|
2819 |
+
"epoch": 0.77,
|
2820 |
+
"learning_rate": 1e-05,
|
2821 |
+
"loss": 1.2422,
|
2822 |
+
"step": 4690
|
2823 |
+
},
|
2824 |
+
{
|
2825 |
+
"epoch": 0.77,
|
2826 |
+
"learning_rate": 1e-05,
|
2827 |
+
"loss": 1.2443,
|
2828 |
+
"step": 4700
|
2829 |
+
},
|
2830 |
+
{
|
2831 |
+
"epoch": 0.77,
|
2832 |
+
"learning_rate": 1e-05,
|
2833 |
+
"loss": 1.3392,
|
2834 |
+
"step": 4710
|
2835 |
+
},
|
2836 |
+
{
|
2837 |
+
"epoch": 0.77,
|
2838 |
+
"learning_rate": 1e-05,
|
2839 |
+
"loss": 1.315,
|
2840 |
+
"step": 4720
|
2841 |
+
},
|
2842 |
+
{
|
2843 |
+
"epoch": 0.77,
|
2844 |
+
"learning_rate": 1e-05,
|
2845 |
+
"loss": 1.2761,
|
2846 |
+
"step": 4730
|
2847 |
+
},
|
2848 |
+
{
|
2849 |
+
"epoch": 0.78,
|
2850 |
+
"learning_rate": 1e-05,
|
2851 |
+
"loss": 1.2308,
|
2852 |
+
"step": 4740
|
2853 |
+
},
|
2854 |
+
{
|
2855 |
+
"epoch": 0.78,
|
2856 |
+
"learning_rate": 1e-05,
|
2857 |
+
"loss": 1.2628,
|
2858 |
+
"step": 4750
|
2859 |
+
},
|
2860 |
+
{
|
2861 |
+
"epoch": 0.78,
|
2862 |
+
"learning_rate": 1e-05,
|
2863 |
+
"loss": 1.2887,
|
2864 |
+
"step": 4760
|
2865 |
+
},
|
2866 |
+
{
|
2867 |
+
"epoch": 0.78,
|
2868 |
+
"learning_rate": 1e-05,
|
2869 |
+
"loss": 1.2942,
|
2870 |
+
"step": 4770
|
2871 |
+
},
|
2872 |
+
{
|
2873 |
+
"epoch": 0.78,
|
2874 |
+
"learning_rate": 1e-05,
|
2875 |
+
"loss": 1.2921,
|
2876 |
+
"step": 4780
|
2877 |
+
},
|
2878 |
+
{
|
2879 |
+
"epoch": 0.78,
|
2880 |
+
"learning_rate": 1e-05,
|
2881 |
+
"loss": 1.2017,
|
2882 |
+
"step": 4790
|
2883 |
+
},
|
2884 |
+
{
|
2885 |
+
"epoch": 0.79,
|
2886 |
+
"learning_rate": 1e-05,
|
2887 |
+
"loss": 1.2328,
|
2888 |
+
"step": 4800
|
2889 |
+
},
|
2890 |
+
{
|
2891 |
+
"epoch": 0.79,
|
2892 |
+
"learning_rate": 1e-05,
|
2893 |
+
"loss": 1.2817,
|
2894 |
+
"step": 4810
|
2895 |
+
},
|
2896 |
+
{
|
2897 |
+
"epoch": 0.79,
|
2898 |
+
"learning_rate": 1e-05,
|
2899 |
+
"loss": 1.2046,
|
2900 |
+
"step": 4820
|
2901 |
+
},
|
2902 |
+
{
|
2903 |
+
"epoch": 0.79,
|
2904 |
+
"learning_rate": 1e-05,
|
2905 |
+
"loss": 1.2962,
|
2906 |
+
"step": 4830
|
2907 |
+
},
|
2908 |
+
{
|
2909 |
+
"epoch": 0.79,
|
2910 |
+
"learning_rate": 1e-05,
|
2911 |
+
"loss": 1.2223,
|
2912 |
+
"step": 4840
|
2913 |
+
},
|
2914 |
+
{
|
2915 |
+
"epoch": 0.79,
|
2916 |
+
"learning_rate": 1e-05,
|
2917 |
+
"loss": 1.3326,
|
2918 |
+
"step": 4850
|
2919 |
+
},
|
2920 |
+
{
|
2921 |
+
"epoch": 0.8,
|
2922 |
+
"learning_rate": 1e-05,
|
2923 |
+
"loss": 1.2584,
|
2924 |
+
"step": 4860
|
2925 |
+
},
|
2926 |
+
{
|
2927 |
+
"epoch": 0.8,
|
2928 |
+
"learning_rate": 1e-05,
|
2929 |
+
"loss": 1.1835,
|
2930 |
+
"step": 4870
|
2931 |
+
},
|
2932 |
+
{
|
2933 |
+
"epoch": 0.8,
|
2934 |
+
"learning_rate": 1e-05,
|
2935 |
+
"loss": 1.2967,
|
2936 |
+
"step": 4880
|
2937 |
+
},
|
2938 |
+
{
|
2939 |
+
"epoch": 0.8,
|
2940 |
+
"learning_rate": 1e-05,
|
2941 |
+
"loss": 1.2358,
|
2942 |
+
"step": 4890
|
2943 |
+
},
|
2944 |
+
{
|
2945 |
+
"epoch": 0.8,
|
2946 |
+
"learning_rate": 1e-05,
|
2947 |
+
"loss": 1.2331,
|
2948 |
+
"step": 4900
|
2949 |
+
},
|
2950 |
+
{
|
2951 |
+
"epoch": 0.8,
|
2952 |
+
"learning_rate": 1e-05,
|
2953 |
+
"loss": 1.2126,
|
2954 |
+
"step": 4910
|
2955 |
+
},
|
2956 |
+
{
|
2957 |
+
"epoch": 0.81,
|
2958 |
+
"learning_rate": 1e-05,
|
2959 |
+
"loss": 1.3323,
|
2960 |
+
"step": 4920
|
2961 |
+
},
|
2962 |
+
{
|
2963 |
+
"epoch": 0.81,
|
2964 |
+
"learning_rate": 1e-05,
|
2965 |
+
"loss": 1.2067,
|
2966 |
+
"step": 4930
|
2967 |
+
},
|
2968 |
+
{
|
2969 |
+
"epoch": 0.81,
|
2970 |
+
"learning_rate": 1e-05,
|
2971 |
+
"loss": 1.2419,
|
2972 |
+
"step": 4940
|
2973 |
+
},
|
2974 |
+
{
|
2975 |
+
"epoch": 0.81,
|
2976 |
+
"learning_rate": 1e-05,
|
2977 |
+
"loss": 1.2713,
|
2978 |
+
"step": 4950
|
2979 |
+
},
|
2980 |
+
{
|
2981 |
+
"epoch": 0.81,
|
2982 |
+
"learning_rate": 1e-05,
|
2983 |
+
"loss": 1.1894,
|
2984 |
+
"step": 4960
|
2985 |
+
},
|
2986 |
+
{
|
2987 |
+
"epoch": 0.81,
|
2988 |
+
"learning_rate": 1e-05,
|
2989 |
+
"loss": 1.2695,
|
2990 |
+
"step": 4970
|
2991 |
+
},
|
2992 |
+
{
|
2993 |
+
"epoch": 0.82,
|
2994 |
+
"learning_rate": 1e-05,
|
2995 |
+
"loss": 1.2709,
|
2996 |
+
"step": 4980
|
2997 |
+
},
|
2998 |
+
{
|
2999 |
+
"epoch": 0.82,
|
3000 |
+
"learning_rate": 1e-05,
|
3001 |
+
"loss": 1.2718,
|
3002 |
+
"step": 4990
|
3003 |
+
},
|
3004 |
+
{
|
3005 |
+
"epoch": 0.82,
|
3006 |
+
"learning_rate": 1e-05,
|
3007 |
+
"loss": 1.31,
|
3008 |
+
"step": 5000
|
3009 |
+
},
|
3010 |
+
{
|
3011 |
+
"epoch": 0.82,
|
3012 |
+
"learning_rate": 1e-05,
|
3013 |
+
"loss": 1.2691,
|
3014 |
+
"step": 5010
|
3015 |
+
},
|
3016 |
+
{
|
3017 |
+
"epoch": 0.82,
|
3018 |
+
"learning_rate": 1e-05,
|
3019 |
+
"loss": 1.2704,
|
3020 |
+
"step": 5020
|
3021 |
+
},
|
3022 |
+
{
|
3023 |
+
"epoch": 0.82,
|
3024 |
+
"learning_rate": 1e-05,
|
3025 |
+
"loss": 1.2374,
|
3026 |
+
"step": 5030
|
3027 |
+
},
|
3028 |
+
{
|
3029 |
+
"epoch": 0.83,
|
3030 |
+
"learning_rate": 1e-05,
|
3031 |
+
"loss": 1.3116,
|
3032 |
+
"step": 5040
|
3033 |
+
},
|
3034 |
+
{
|
3035 |
+
"epoch": 0.83,
|
3036 |
+
"learning_rate": 1e-05,
|
3037 |
+
"loss": 1.3039,
|
3038 |
+
"step": 5050
|
3039 |
+
},
|
3040 |
+
{
|
3041 |
+
"epoch": 0.83,
|
3042 |
+
"learning_rate": 1e-05,
|
3043 |
+
"loss": 1.223,
|
3044 |
+
"step": 5060
|
3045 |
+
},
|
3046 |
+
{
|
3047 |
+
"epoch": 0.83,
|
3048 |
+
"learning_rate": 1e-05,
|
3049 |
+
"loss": 1.2047,
|
3050 |
+
"step": 5070
|
3051 |
+
},
|
3052 |
+
{
|
3053 |
+
"epoch": 0.83,
|
3054 |
+
"learning_rate": 1e-05,
|
3055 |
+
"loss": 1.2721,
|
3056 |
+
"step": 5080
|
3057 |
+
},
|
3058 |
+
{
|
3059 |
+
"epoch": 0.83,
|
3060 |
+
"learning_rate": 1e-05,
|
3061 |
+
"loss": 1.292,
|
3062 |
+
"step": 5090
|
3063 |
+
},
|
3064 |
+
{
|
3065 |
+
"epoch": 0.84,
|
3066 |
+
"learning_rate": 1e-05,
|
3067 |
+
"loss": 1.2201,
|
3068 |
+
"step": 5100
|
3069 |
+
},
|
3070 |
+
{
|
3071 |
+
"epoch": 0.84,
|
3072 |
+
"learning_rate": 1e-05,
|
3073 |
+
"loss": 1.2874,
|
3074 |
+
"step": 5110
|
3075 |
+
},
|
3076 |
+
{
|
3077 |
+
"epoch": 0.84,
|
3078 |
+
"learning_rate": 1e-05,
|
3079 |
+
"loss": 1.2849,
|
3080 |
+
"step": 5120
|
3081 |
+
},
|
3082 |
+
{
|
3083 |
+
"epoch": 0.84,
|
3084 |
+
"learning_rate": 1e-05,
|
3085 |
+
"loss": 1.2056,
|
3086 |
+
"step": 5130
|
3087 |
+
},
|
3088 |
+
{
|
3089 |
+
"epoch": 0.84,
|
3090 |
+
"learning_rate": 1e-05,
|
3091 |
+
"loss": 1.2918,
|
3092 |
+
"step": 5140
|
3093 |
+
},
|
3094 |
+
{
|
3095 |
+
"epoch": 0.84,
|
3096 |
+
"learning_rate": 1e-05,
|
3097 |
+
"loss": 1.2618,
|
3098 |
+
"step": 5150
|
3099 |
+
},
|
3100 |
+
{
|
3101 |
+
"epoch": 0.85,
|
3102 |
+
"learning_rate": 1e-05,
|
3103 |
+
"loss": 1.2592,
|
3104 |
+
"step": 5160
|
3105 |
+
},
|
3106 |
+
{
|
3107 |
+
"epoch": 0.85,
|
3108 |
+
"learning_rate": 1e-05,
|
3109 |
+
"loss": 1.221,
|
3110 |
+
"step": 5170
|
3111 |
+
},
|
3112 |
+
{
|
3113 |
+
"epoch": 0.85,
|
3114 |
+
"learning_rate": 1e-05,
|
3115 |
+
"loss": 1.2401,
|
3116 |
+
"step": 5180
|
3117 |
+
},
|
3118 |
+
{
|
3119 |
+
"epoch": 0.85,
|
3120 |
+
"learning_rate": 1e-05,
|
3121 |
+
"loss": 1.2268,
|
3122 |
+
"step": 5190
|
3123 |
+
},
|
3124 |
+
{
|
3125 |
+
"epoch": 0.85,
|
3126 |
+
"learning_rate": 1e-05,
|
3127 |
+
"loss": 1.2221,
|
3128 |
+
"step": 5200
|
3129 |
+
},
|
3130 |
+
{
|
3131 |
+
"epoch": 0.85,
|
3132 |
+
"learning_rate": 1e-05,
|
3133 |
+
"loss": 1.1223,
|
3134 |
+
"step": 5210
|
3135 |
+
},
|
3136 |
+
{
|
3137 |
+
"epoch": 0.86,
|
3138 |
+
"learning_rate": 1e-05,
|
3139 |
+
"loss": 1.1579,
|
3140 |
+
"step": 5220
|
3141 |
+
},
|
3142 |
+
{
|
3143 |
+
"epoch": 0.86,
|
3144 |
+
"learning_rate": 1e-05,
|
3145 |
+
"loss": 1.2795,
|
3146 |
+
"step": 5230
|
3147 |
+
},
|
3148 |
+
{
|
3149 |
+
"epoch": 0.86,
|
3150 |
+
"learning_rate": 1e-05,
|
3151 |
+
"loss": 1.2462,
|
3152 |
+
"step": 5240
|
3153 |
+
},
|
3154 |
+
{
|
3155 |
+
"epoch": 0.86,
|
3156 |
+
"learning_rate": 1e-05,
|
3157 |
+
"loss": 1.2158,
|
3158 |
+
"step": 5250
|
3159 |
+
},
|
3160 |
+
{
|
3161 |
+
"epoch": 0.86,
|
3162 |
+
"learning_rate": 1e-05,
|
3163 |
+
"loss": 1.1765,
|
3164 |
+
"step": 5260
|
3165 |
+
},
|
3166 |
+
{
|
3167 |
+
"epoch": 0.86,
|
3168 |
+
"learning_rate": 1e-05,
|
3169 |
+
"loss": 1.2117,
|
3170 |
+
"step": 5270
|
3171 |
+
},
|
3172 |
+
{
|
3173 |
+
"epoch": 0.86,
|
3174 |
+
"learning_rate": 1e-05,
|
3175 |
+
"loss": 1.2117,
|
3176 |
+
"step": 5280
|
3177 |
+
},
|
3178 |
+
{
|
3179 |
+
"epoch": 0.87,
|
3180 |
+
"learning_rate": 1e-05,
|
3181 |
+
"loss": 1.204,
|
3182 |
+
"step": 5290
|
3183 |
+
},
|
3184 |
+
{
|
3185 |
+
"epoch": 0.87,
|
3186 |
+
"learning_rate": 1e-05,
|
3187 |
+
"loss": 1.2754,
|
3188 |
+
"step": 5300
|
3189 |
+
},
|
3190 |
+
{
|
3191 |
+
"epoch": 0.87,
|
3192 |
+
"learning_rate": 1e-05,
|
3193 |
+
"loss": 1.2453,
|
3194 |
+
"step": 5310
|
3195 |
+
},
|
3196 |
+
{
|
3197 |
+
"epoch": 0.87,
|
3198 |
+
"learning_rate": 1e-05,
|
3199 |
+
"loss": 1.2434,
|
3200 |
+
"step": 5320
|
3201 |
+
},
|
3202 |
+
{
|
3203 |
+
"epoch": 0.87,
|
3204 |
+
"learning_rate": 1e-05,
|
3205 |
+
"loss": 1.2598,
|
3206 |
+
"step": 5330
|
3207 |
+
},
|
3208 |
+
{
|
3209 |
+
"epoch": 0.87,
|
3210 |
+
"learning_rate": 1e-05,
|
3211 |
+
"loss": 1.2409,
|
3212 |
+
"step": 5340
|
3213 |
+
},
|
3214 |
+
{
|
3215 |
+
"epoch": 0.88,
|
3216 |
+
"learning_rate": 1e-05,
|
3217 |
+
"loss": 1.2302,
|
3218 |
+
"step": 5350
|
3219 |
+
},
|
3220 |
+
{
|
3221 |
+
"epoch": 0.88,
|
3222 |
+
"learning_rate": 1e-05,
|
3223 |
+
"loss": 1.2618,
|
3224 |
+
"step": 5360
|
3225 |
+
},
|
3226 |
+
{
|
3227 |
+
"epoch": 0.88,
|
3228 |
+
"learning_rate": 1e-05,
|
3229 |
+
"loss": 1.3057,
|
3230 |
+
"step": 5370
|
3231 |
+
},
|
3232 |
+
{
|
3233 |
+
"epoch": 0.88,
|
3234 |
+
"learning_rate": 1e-05,
|
3235 |
+
"loss": 1.2942,
|
3236 |
+
"step": 5380
|
3237 |
+
},
|
3238 |
+
{
|
3239 |
+
"epoch": 0.88,
|
3240 |
+
"learning_rate": 1e-05,
|
3241 |
+
"loss": 1.1696,
|
3242 |
+
"step": 5390
|
3243 |
+
},
|
3244 |
+
{
|
3245 |
+
"epoch": 0.88,
|
3246 |
+
"learning_rate": 1e-05,
|
3247 |
+
"loss": 1.2329,
|
3248 |
+
"step": 5400
|
3249 |
+
},
|
3250 |
+
{
|
3251 |
+
"epoch": 0.89,
|
3252 |
+
"learning_rate": 1e-05,
|
3253 |
+
"loss": 1.2805,
|
3254 |
+
"step": 5410
|
3255 |
+
},
|
3256 |
+
{
|
3257 |
+
"epoch": 0.89,
|
3258 |
+
"learning_rate": 1e-05,
|
3259 |
+
"loss": 1.2741,
|
3260 |
+
"step": 5420
|
3261 |
+
},
|
3262 |
+
{
|
3263 |
+
"epoch": 0.89,
|
3264 |
+
"learning_rate": 1e-05,
|
3265 |
+
"loss": 1.2481,
|
3266 |
+
"step": 5430
|
3267 |
+
},
|
3268 |
+
{
|
3269 |
+
"epoch": 0.89,
|
3270 |
+
"learning_rate": 1e-05,
|
3271 |
+
"loss": 1.2315,
|
3272 |
+
"step": 5440
|
3273 |
+
},
|
3274 |
+
{
|
3275 |
+
"epoch": 0.89,
|
3276 |
+
"learning_rate": 1e-05,
|
3277 |
+
"loss": 1.3099,
|
3278 |
+
"step": 5450
|
3279 |
+
},
|
3280 |
+
{
|
3281 |
+
"epoch": 0.89,
|
3282 |
+
"learning_rate": 1e-05,
|
3283 |
+
"loss": 1.2454,
|
3284 |
+
"step": 5460
|
3285 |
+
},
|
3286 |
+
{
|
3287 |
+
"epoch": 0.9,
|
3288 |
+
"learning_rate": 1e-05,
|
3289 |
+
"loss": 1.2796,
|
3290 |
+
"step": 5470
|
3291 |
+
},
|
3292 |
+
{
|
3293 |
+
"epoch": 0.9,
|
3294 |
+
"learning_rate": 1e-05,
|
3295 |
+
"loss": 1.2591,
|
3296 |
+
"step": 5480
|
3297 |
+
},
|
3298 |
+
{
|
3299 |
+
"epoch": 0.9,
|
3300 |
+
"learning_rate": 1e-05,
|
3301 |
+
"loss": 1.2764,
|
3302 |
+
"step": 5490
|
3303 |
+
},
|
3304 |
+
{
|
3305 |
+
"epoch": 0.9,
|
3306 |
+
"learning_rate": 1e-05,
|
3307 |
+
"loss": 1.2662,
|
3308 |
+
"step": 5500
|
3309 |
+
},
|
3310 |
+
{
|
3311 |
+
"epoch": 0.9,
|
3312 |
+
"learning_rate": 1e-05,
|
3313 |
+
"loss": 1.2407,
|
3314 |
+
"step": 5510
|
3315 |
+
},
|
3316 |
+
{
|
3317 |
+
"epoch": 0.9,
|
3318 |
+
"learning_rate": 1e-05,
|
3319 |
+
"loss": 1.219,
|
3320 |
+
"step": 5520
|
3321 |
+
},
|
3322 |
+
{
|
3323 |
+
"epoch": 0.91,
|
3324 |
+
"learning_rate": 1e-05,
|
3325 |
+
"loss": 1.2577,
|
3326 |
+
"step": 5530
|
3327 |
+
},
|
3328 |
+
{
|
3329 |
+
"epoch": 0.91,
|
3330 |
+
"learning_rate": 1e-05,
|
3331 |
+
"loss": 1.2551,
|
3332 |
+
"step": 5540
|
3333 |
+
},
|
3334 |
+
{
|
3335 |
+
"epoch": 0.91,
|
3336 |
+
"learning_rate": 1e-05,
|
3337 |
+
"loss": 1.1574,
|
3338 |
+
"step": 5550
|
3339 |
+
},
|
3340 |
+
{
|
3341 |
+
"epoch": 0.91,
|
3342 |
+
"learning_rate": 1e-05,
|
3343 |
+
"loss": 1.2744,
|
3344 |
+
"step": 5560
|
3345 |
+
},
|
3346 |
+
{
|
3347 |
+
"epoch": 0.91,
|
3348 |
+
"learning_rate": 1e-05,
|
3349 |
+
"loss": 1.2122,
|
3350 |
+
"step": 5570
|
3351 |
+
},
|
3352 |
+
{
|
3353 |
+
"epoch": 0.91,
|
3354 |
+
"learning_rate": 1e-05,
|
3355 |
+
"loss": 1.2706,
|
3356 |
+
"step": 5580
|
3357 |
+
},
|
3358 |
+
{
|
3359 |
+
"epoch": 0.92,
|
3360 |
+
"learning_rate": 1e-05,
|
3361 |
+
"loss": 1.2703,
|
3362 |
+
"step": 5590
|
3363 |
+
},
|
3364 |
+
{
|
3365 |
+
"epoch": 0.92,
|
3366 |
+
"learning_rate": 1e-05,
|
3367 |
+
"loss": 1.2772,
|
3368 |
+
"step": 5600
|
3369 |
+
},
|
3370 |
+
{
|
3371 |
+
"epoch": 0.92,
|
3372 |
+
"learning_rate": 1e-05,
|
3373 |
+
"loss": 1.2145,
|
3374 |
+
"step": 5610
|
3375 |
+
},
|
3376 |
+
{
|
3377 |
+
"epoch": 0.92,
|
3378 |
+
"learning_rate": 1e-05,
|
3379 |
+
"loss": 1.3134,
|
3380 |
+
"step": 5620
|
3381 |
+
},
|
3382 |
+
{
|
3383 |
+
"epoch": 0.92,
|
3384 |
+
"learning_rate": 1e-05,
|
3385 |
+
"loss": 1.234,
|
3386 |
+
"step": 5630
|
3387 |
+
},
|
3388 |
+
{
|
3389 |
+
"epoch": 0.92,
|
3390 |
+
"learning_rate": 1e-05,
|
3391 |
+
"loss": 1.2484,
|
3392 |
+
"step": 5640
|
3393 |
+
},
|
3394 |
+
{
|
3395 |
+
"epoch": 0.93,
|
3396 |
+
"learning_rate": 1e-05,
|
3397 |
+
"loss": 1.1774,
|
3398 |
+
"step": 5650
|
3399 |
+
},
|
3400 |
+
{
|
3401 |
+
"epoch": 0.93,
|
3402 |
+
"learning_rate": 1e-05,
|
3403 |
+
"loss": 1.3045,
|
3404 |
+
"step": 5660
|
3405 |
+
},
|
3406 |
+
{
|
3407 |
+
"epoch": 0.93,
|
3408 |
+
"learning_rate": 1e-05,
|
3409 |
+
"loss": 1.2948,
|
3410 |
+
"step": 5670
|
3411 |
+
},
|
3412 |
+
{
|
3413 |
+
"epoch": 0.93,
|
3414 |
+
"learning_rate": 1e-05,
|
3415 |
+
"loss": 1.25,
|
3416 |
+
"step": 5680
|
3417 |
+
},
|
3418 |
+
{
|
3419 |
+
"epoch": 0.93,
|
3420 |
+
"learning_rate": 1e-05,
|
3421 |
+
"loss": 1.2265,
|
3422 |
+
"step": 5690
|
3423 |
+
},
|
3424 |
+
{
|
3425 |
+
"epoch": 0.93,
|
3426 |
+
"learning_rate": 1e-05,
|
3427 |
+
"loss": 1.3164,
|
3428 |
+
"step": 5700
|
3429 |
+
},
|
3430 |
+
{
|
3431 |
+
"epoch": 0.94,
|
3432 |
+
"learning_rate": 1e-05,
|
3433 |
+
"loss": 1.2688,
|
3434 |
+
"step": 5710
|
3435 |
+
},
|
3436 |
+
{
|
3437 |
+
"epoch": 0.94,
|
3438 |
+
"learning_rate": 1e-05,
|
3439 |
+
"loss": 1.2615,
|
3440 |
+
"step": 5720
|
3441 |
+
},
|
3442 |
+
{
|
3443 |
+
"epoch": 0.94,
|
3444 |
+
"learning_rate": 1e-05,
|
3445 |
+
"loss": 1.2785,
|
3446 |
+
"step": 5730
|
3447 |
+
},
|
3448 |
+
{
|
3449 |
+
"epoch": 0.94,
|
3450 |
+
"learning_rate": 1e-05,
|
3451 |
+
"loss": 1.2813,
|
3452 |
+
"step": 5740
|
3453 |
+
},
|
3454 |
+
{
|
3455 |
+
"epoch": 0.94,
|
3456 |
+
"learning_rate": 1e-05,
|
3457 |
+
"loss": 1.2287,
|
3458 |
+
"step": 5750
|
3459 |
+
},
|
3460 |
+
{
|
3461 |
+
"epoch": 0.94,
|
3462 |
+
"learning_rate": 1e-05,
|
3463 |
+
"loss": 1.2914,
|
3464 |
+
"step": 5760
|
3465 |
+
},
|
3466 |
+
{
|
3467 |
+
"epoch": 0.95,
|
3468 |
+
"learning_rate": 1e-05,
|
3469 |
+
"loss": 1.2133,
|
3470 |
+
"step": 5770
|
3471 |
+
},
|
3472 |
+
{
|
3473 |
+
"epoch": 0.95,
|
3474 |
+
"learning_rate": 1e-05,
|
3475 |
+
"loss": 1.2405,
|
3476 |
+
"step": 5780
|
3477 |
+
},
|
3478 |
+
{
|
3479 |
+
"epoch": 0.95,
|
3480 |
+
"learning_rate": 1e-05,
|
3481 |
+
"loss": 1.3153,
|
3482 |
+
"step": 5790
|
3483 |
+
},
|
3484 |
+
{
|
3485 |
+
"epoch": 0.95,
|
3486 |
+
"learning_rate": 1e-05,
|
3487 |
+
"loss": 1.2094,
|
3488 |
+
"step": 5800
|
3489 |
+
},
|
3490 |
+
{
|
3491 |
+
"epoch": 0.95,
|
3492 |
+
"learning_rate": 1e-05,
|
3493 |
+
"loss": 1.2593,
|
3494 |
+
"step": 5810
|
3495 |
+
},
|
3496 |
+
{
|
3497 |
+
"epoch": 0.95,
|
3498 |
+
"learning_rate": 1e-05,
|
3499 |
+
"loss": 1.3192,
|
3500 |
+
"step": 5820
|
3501 |
+
},
|
3502 |
+
{
|
3503 |
+
"epoch": 0.96,
|
3504 |
+
"learning_rate": 1e-05,
|
3505 |
+
"loss": 1.2264,
|
3506 |
+
"step": 5830
|
3507 |
+
},
|
3508 |
+
{
|
3509 |
+
"epoch": 0.96,
|
3510 |
+
"learning_rate": 1e-05,
|
3511 |
+
"loss": 1.267,
|
3512 |
+
"step": 5840
|
3513 |
+
},
|
3514 |
+
{
|
3515 |
+
"epoch": 0.96,
|
3516 |
+
"learning_rate": 1e-05,
|
3517 |
+
"loss": 1.1878,
|
3518 |
+
"step": 5850
|
3519 |
+
},
|
3520 |
+
{
|
3521 |
+
"epoch": 0.96,
|
3522 |
+
"learning_rate": 1e-05,
|
3523 |
+
"loss": 1.2058,
|
3524 |
+
"step": 5860
|
3525 |
+
},
|
3526 |
+
{
|
3527 |
+
"epoch": 0.96,
|
3528 |
+
"learning_rate": 1e-05,
|
3529 |
+
"loss": 1.1589,
|
3530 |
+
"step": 5870
|
3531 |
+
},
|
3532 |
+
{
|
3533 |
+
"epoch": 0.96,
|
3534 |
+
"learning_rate": 1e-05,
|
3535 |
+
"loss": 1.1993,
|
3536 |
+
"step": 5880
|
3537 |
+
},
|
3538 |
+
{
|
3539 |
+
"epoch": 0.96,
|
3540 |
+
"learning_rate": 1e-05,
|
3541 |
+
"loss": 1.2312,
|
3542 |
+
"step": 5890
|
3543 |
+
},
|
3544 |
+
{
|
3545 |
+
"epoch": 0.97,
|
3546 |
+
"learning_rate": 1e-05,
|
3547 |
+
"loss": 1.2511,
|
3548 |
+
"step": 5900
|
3549 |
+
},
|
3550 |
+
{
|
3551 |
+
"epoch": 0.97,
|
3552 |
+
"learning_rate": 1e-05,
|
3553 |
+
"loss": 1.3163,
|
3554 |
+
"step": 5910
|
3555 |
+
},
|
3556 |
+
{
|
3557 |
+
"epoch": 0.97,
|
3558 |
+
"learning_rate": 1e-05,
|
3559 |
+
"loss": 1.2523,
|
3560 |
+
"step": 5920
|
3561 |
+
},
|
3562 |
+
{
|
3563 |
+
"epoch": 0.97,
|
3564 |
+
"learning_rate": 1e-05,
|
3565 |
+
"loss": 1.3137,
|
3566 |
+
"step": 5930
|
3567 |
+
},
|
3568 |
+
{
|
3569 |
+
"epoch": 0.97,
|
3570 |
+
"learning_rate": 1e-05,
|
3571 |
+
"loss": 1.2225,
|
3572 |
+
"step": 5940
|
3573 |
+
},
|
3574 |
+
{
|
3575 |
+
"epoch": 0.97,
|
3576 |
+
"learning_rate": 1e-05,
|
3577 |
+
"loss": 1.2642,
|
3578 |
+
"step": 5950
|
3579 |
+
},
|
3580 |
+
{
|
3581 |
+
"epoch": 0.98,
|
3582 |
+
"learning_rate": 1e-05,
|
3583 |
+
"loss": 1.2146,
|
3584 |
+
"step": 5960
|
3585 |
+
},
|
3586 |
+
{
|
3587 |
+
"epoch": 0.98,
|
3588 |
+
"learning_rate": 1e-05,
|
3589 |
+
"loss": 1.3105,
|
3590 |
+
"step": 5970
|
3591 |
+
},
|
3592 |
+
{
|
3593 |
+
"epoch": 0.98,
|
3594 |
+
"learning_rate": 1e-05,
|
3595 |
+
"loss": 1.2762,
|
3596 |
+
"step": 5980
|
3597 |
+
},
|
3598 |
+
{
|
3599 |
+
"epoch": 0.98,
|
3600 |
+
"learning_rate": 1e-05,
|
3601 |
+
"loss": 1.2242,
|
3602 |
+
"step": 5990
|
3603 |
+
},
|
3604 |
+
{
|
3605 |
+
"epoch": 0.98,
|
3606 |
+
"learning_rate": 1e-05,
|
3607 |
+
"loss": 1.2385,
|
3608 |
+
"step": 6000
|
3609 |
+
},
|
3610 |
+
{
|
3611 |
+
"epoch": 0.98,
|
3612 |
+
"learning_rate": 1e-05,
|
3613 |
+
"loss": 1.2467,
|
3614 |
+
"step": 6010
|
3615 |
+
},
|
3616 |
+
{
|
3617 |
+
"epoch": 0.99,
|
3618 |
+
"learning_rate": 1e-05,
|
3619 |
+
"loss": 1.2547,
|
3620 |
+
"step": 6020
|
3621 |
+
},
|
3622 |
+
{
|
3623 |
+
"epoch": 0.99,
|
3624 |
+
"learning_rate": 1e-05,
|
3625 |
+
"loss": 1.2799,
|
3626 |
+
"step": 6030
|
3627 |
+
},
|
3628 |
+
{
|
3629 |
+
"epoch": 0.99,
|
3630 |
+
"learning_rate": 1e-05,
|
3631 |
+
"loss": 1.2916,
|
3632 |
+
"step": 6040
|
3633 |
+
},
|
3634 |
+
{
|
3635 |
+
"epoch": 0.99,
|
3636 |
+
"learning_rate": 1e-05,
|
3637 |
+
"loss": 1.2668,
|
3638 |
+
"step": 6050
|
3639 |
+
},
|
3640 |
+
{
|
3641 |
+
"epoch": 0.99,
|
3642 |
+
"learning_rate": 1e-05,
|
3643 |
+
"loss": 1.1854,
|
3644 |
+
"step": 6060
|
3645 |
+
},
|
3646 |
+
{
|
3647 |
+
"epoch": 0.99,
|
3648 |
+
"learning_rate": 1e-05,
|
3649 |
+
"loss": 1.2529,
|
3650 |
+
"step": 6070
|
3651 |
+
},
|
3652 |
+
{
|
3653 |
+
"epoch": 1.0,
|
3654 |
+
"learning_rate": 1e-05,
|
3655 |
+
"loss": 1.2653,
|
3656 |
+
"step": 6080
|
3657 |
+
},
|
3658 |
+
{
|
3659 |
+
"epoch": 1.0,
|
3660 |
+
"learning_rate": 1e-05,
|
3661 |
+
"loss": 1.2418,
|
3662 |
+
"step": 6090
|
3663 |
+
},
|
3664 |
+
{
|
3665 |
+
"epoch": 1.0,
|
3666 |
+
"learning_rate": 1e-05,
|
3667 |
+
"loss": 1.246,
|
3668 |
+
"step": 6100
|
3669 |
+
},
|
3670 |
+
{
|
3671 |
+
"epoch": 1.0,
|
3672 |
+
"eval_oasst_export_accuracy": 0.6878104734550841,
|
3673 |
+
"eval_oasst_export_loss": 1.349609375,
|
3674 |
+
"eval_oasst_export_runtime": 19.3636,
|
3675 |
+
"eval_oasst_export_samples_per_second": 15.493,
|
3676 |
+
"eval_oasst_export_steps_per_second": 1.962,
|
3677 |
+
"step": 6104
|
3678 |
+
},
|
3679 |
+
{
|
3680 |
+
"epoch": 1.0,
|
3681 |
+
"eval_dolly15k_accuracy": 0.6627859972511925,
|
3682 |
+
"eval_dolly15k_loss": 1.2138671875,
|
3683 |
+
"eval_dolly15k_runtime": 15.5602,
|
3684 |
+
"eval_dolly15k_samples_per_second": 19.28,
|
3685 |
+
"eval_dolly15k_steps_per_second": 2.442,
|
3686 |
+
"step": 6104
|
3687 |
+
},
|
3688 |
+
{
|
3689 |
+
"epoch": 1.0,
|
3690 |
+
"eval__ruozhiba_accuracy": 0.5154994259471871,
|
3691 |
+
"eval__ruozhiba_loss": 1.7412109375,
|
3692 |
+
"eval__ruozhiba_runtime": 0.6619,
|
3693 |
+
"eval__ruozhiba_samples_per_second": 10.576,
|
3694 |
+
"eval__ruozhiba_steps_per_second": 1.511,
|
3695 |
+
"step": 6104
|
3696 |
+
},
|
3697 |
+
{
|
3698 |
+
"epoch": 1.0,
|
3699 |
+
"eval__sharegpt_format_accuracy": 0.8137771622392778,
|
3700 |
+
"eval__sharegpt_format_loss": 1.0361328125,
|
3701 |
+
"eval__sharegpt_format_runtime": 32.5298,
|
3702 |
+
"eval__sharegpt_format_samples_per_second": 15.371,
|
3703 |
+
"eval__sharegpt_format_steps_per_second": 1.937,
|
3704 |
+
"step": 6104
|
3705 |
+
},
|
3706 |
+
{
|
3707 |
+
"epoch": 1.0,
|
3708 |
+
"eval__similar_question_accuracy": 0.577728776185226,
|
3709 |
+
"eval__similar_question_loss": 1.6435546875,
|
3710 |
+
"eval__similar_question_runtime": 0.7886,
|
3711 |
+
"eval__similar_question_samples_per_second": 8.877,
|
3712 |
+
"eval__similar_question_steps_per_second": 1.268,
|
3713 |
+
"step": 6104
|
3714 |
+
},
|
3715 |
+
{
|
3716 |
+
"epoch": 1.0,
|
3717 |
+
"eval__open_domain_subject_accuracy": 0.6082298514730947,
|
3718 |
+
"eval__open_domain_subject_loss": 1.451171875,
|
3719 |
+
"eval__open_domain_subject_runtime": 2.7365,
|
3720 |
+
"eval__open_domain_subject_samples_per_second": 16.81,
|
3721 |
+
"eval__open_domain_subject_steps_per_second": 2.193,
|
3722 |
+
"step": 6104
|
3723 |
+
},
|
3724 |
+
{
|
3725 |
+
"epoch": 1.0,
|
3726 |
+
"eval__empdia_ly_07_17_accuracy": 0.6261699064074874,
|
3727 |
+
"eval__empdia_ly_07_17_loss": 1.33984375,
|
3728 |
+
"eval__empdia_ly_07_17_runtime": 5.1144,
|
3729 |
+
"eval__empdia_ly_07_17_samples_per_second": 17.988,
|
3730 |
+
"eval__empdia_ly_07_17_steps_per_second": 2.346,
|
3731 |
+
"step": 6104
|
3732 |
+
},
|
3733 |
+
{
|
3734 |
+
"epoch": 1.0,
|
3735 |
+
"eval__zuowen_accuracy": 0.9144507380228243,
|
3736 |
+
"eval__zuowen_loss": 0.299560546875,
|
3737 |
+
"eval__zuowen_runtime": 6.9808,
|
3738 |
+
"eval__zuowen_samples_per_second": 14.325,
|
3739 |
+
"eval__zuowen_steps_per_second": 1.862,
|
3740 |
+
"step": 6104
|
3741 |
+
},
|
3742 |
+
{
|
3743 |
+
"epoch": 1.0,
|
3744 |
+
"eval__psychat_6_29_and_11_15_mix_accuracy": 0.5055779183438758,
|
3745 |
+
"eval__psychat_6_29_and_11_15_mix_loss": 1.9296875,
|
3746 |
+
"eval__psychat_6_29_and_11_15_mix_runtime": 6.0911,
|
3747 |
+
"eval__psychat_6_29_and_11_15_mix_samples_per_second": 16.417,
|
3748 |
+
"eval__psychat_6_29_and_11_15_mix_steps_per_second": 2.134,
|
3749 |
+
"step": 6104
|
3750 |
+
},
|
3751 |
+
{
|
3752 |
+
"epoch": 1.0,
|
3753 |
+
"eval__psy_qa_1208_accuracy": 0.49772520473157417,
|
3754 |
+
"eval__psy_qa_1208_loss": 2.26171875,
|
3755 |
+
"eval__psy_qa_1208_runtime": 2.7612,
|
3756 |
+
"eval__psy_qa_1208_samples_per_second": 16.297,
|
3757 |
+
"eval__psy_qa_1208_steps_per_second": 2.173,
|
3758 |
+
"step": 6104
|
3759 |
+
},
|
3760 |
+
{
|
3761 |
+
"epoch": 1.0,
|
3762 |
+
"eval__socrates_teaching_accuracy": 0.6412340032115226,
|
3763 |
+
"eval__socrates_teaching_loss": 1.3828125,
|
3764 |
+
"eval__socrates_teaching_runtime": 5.1769,
|
3765 |
+
"eval__socrates_teaching_samples_per_second": 16.612,
|
3766 |
+
"eval__socrates_teaching_steps_per_second": 2.125,
|
3767 |
+
"step": 6104
|
3768 |
+
},
|
3769 |
+
{
|
3770 |
+
"epoch": 1.0,
|
3771 |
+
"eval__socrates_teaching_math1213_accuracy": 0.9996854356715948,
|
3772 |
+
"eval__socrates_teaching_math1213_loss": 0.0015439987182617188,
|
3773 |
+
"eval__socrates_teaching_math1213_runtime": 1.6723,
|
3774 |
+
"eval__socrates_teaching_math1213_samples_per_second": 14.949,
|
3775 |
+
"eval__socrates_teaching_math1213_steps_per_second": 2.392,
|
3776 |
+
"step": 6104
|
3777 |
+
},
|
3778 |
+
{
|
3779 |
+
"epoch": 1.0,
|
3780 |
+
"eval__search_accuracy": 0.6996122053270742,
|
3781 |
+
"eval__search_loss": 1.099609375,
|
3782 |
+
"eval__search_runtime": 5.9225,
|
3783 |
+
"eval__search_samples_per_second": 16.885,
|
3784 |
+
"eval__search_steps_per_second": 2.195,
|
3785 |
+
"step": 6104
|
3786 |
+
}
|
3787 |
+
],
|
3788 |
+
"max_steps": 12208,
|
3789 |
+
"num_train_epochs": 2,
|
3790 |
+
"total_flos": 5281029455085568.0,
|
3791 |
+
"trial_name": null,
|
3792 |
+
"trial_params": null
|
3793 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:535ba74a271c3cad7b287704e9bf2a2d5382df0492157794efcf2367722a2425
|
3 |
+
size 6203
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,587 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
252 |
+
param_shapes = zero_model_states[0].param_shapes
|
253 |
+
|
254 |
+
# Reconstruction protocol:
|
255 |
+
#
|
256 |
+
# XXX: document this
|
257 |
+
|
258 |
+
if debug:
|
259 |
+
for i in range(world_size):
|
260 |
+
for j in range(len(fp32_flat_groups[0])):
|
261 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
262 |
+
|
263 |
+
# XXX: memory usage doubles here (zero2)
|
264 |
+
num_param_groups = len(fp32_flat_groups[0])
|
265 |
+
merged_single_partition_of_fp32_groups = []
|
266 |
+
for i in range(num_param_groups):
|
267 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
268 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
269 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
270 |
+
avail_numel = sum(
|
271 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
272 |
+
|
273 |
+
if debug:
|
274 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
275 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
276 |
+
# not asserting if there is a mismatch due to possible padding
|
277 |
+
print(f"Have {avail_numel} numels to process.")
|
278 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
279 |
+
|
280 |
+
# params
|
281 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
282 |
+
# out-of-core computing solution
|
283 |
+
total_numel = 0
|
284 |
+
total_params = 0
|
285 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
286 |
+
offset = 0
|
287 |
+
avail_numel = full_single_fp32_vector.numel()
|
288 |
+
for name, shape in shapes.items():
|
289 |
+
|
290 |
+
unpartitioned_numel = shape.numel()
|
291 |
+
total_numel += unpartitioned_numel
|
292 |
+
total_params += 1
|
293 |
+
|
294 |
+
if debug:
|
295 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
296 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
297 |
+
offset += unpartitioned_numel
|
298 |
+
|
299 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
300 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
301 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
302 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
303 |
+
align_to = 2 * world_size
|
304 |
+
|
305 |
+
def zero2_align(x):
|
306 |
+
return align_to * math.ceil(x / align_to)
|
307 |
+
|
308 |
+
if debug:
|
309 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
310 |
+
|
311 |
+
offset = zero2_align(offset)
|
312 |
+
avail_numel = zero2_align(avail_numel)
|
313 |
+
|
314 |
+
if debug:
|
315 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
316 |
+
|
317 |
+
# Sanity check
|
318 |
+
if offset != avail_numel:
|
319 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
320 |
+
|
321 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
322 |
+
|
323 |
+
|
324 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
325 |
+
state_dict = OrderedDict()
|
326 |
+
|
327 |
+
# buffers
|
328 |
+
buffers = zero_model_states[0].buffers
|
329 |
+
state_dict.update(buffers)
|
330 |
+
if debug:
|
331 |
+
print(f"added {len(buffers)} buffers")
|
332 |
+
|
333 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
334 |
+
|
335 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
336 |
+
|
337 |
+
# recover shared parameters
|
338 |
+
for pair in zero_model_states[0].shared_params:
|
339 |
+
if pair[1] in state_dict:
|
340 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
341 |
+
|
342 |
+
return state_dict
|
343 |
+
|
344 |
+
|
345 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
346 |
+
remainder = unpartitioned_numel % world_size
|
347 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
348 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
349 |
+
return partitioned_numel, padding_numel
|
350 |
+
|
351 |
+
|
352 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
353 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
354 |
+
return
|
355 |
+
|
356 |
+
if debug:
|
357 |
+
for i in range(world_size):
|
358 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
359 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
360 |
+
|
361 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
362 |
+
wanted_params = len(frozen_param_shapes)
|
363 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
364 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
365 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
366 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
367 |
+
|
368 |
+
total_params = 0
|
369 |
+
total_numel = 0
|
370 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
371 |
+
total_params += 1
|
372 |
+
unpartitioned_numel = shape.numel()
|
373 |
+
total_numel += unpartitioned_numel
|
374 |
+
|
375 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
376 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
377 |
+
|
378 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
379 |
+
|
380 |
+
if debug:
|
381 |
+
print(
|
382 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
383 |
+
)
|
384 |
+
|
385 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
386 |
+
|
387 |
+
|
388 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
389 |
+
param_shapes = zero_model_states[0].param_shapes
|
390 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
391 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
392 |
+
# param, re-consolidating each param, while dealing with padding if any
|
393 |
+
|
394 |
+
# merge list of dicts, preserving order
|
395 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
396 |
+
|
397 |
+
if debug:
|
398 |
+
for i in range(world_size):
|
399 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
400 |
+
|
401 |
+
wanted_params = len(param_shapes)
|
402 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
403 |
+
# not asserting if there is a mismatch due to possible padding
|
404 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
405 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
406 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
407 |
+
|
408 |
+
# params
|
409 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
410 |
+
# out-of-core computing solution
|
411 |
+
offset = 0
|
412 |
+
total_numel = 0
|
413 |
+
total_params = 0
|
414 |
+
for name, shape in param_shapes.items():
|
415 |
+
|
416 |
+
unpartitioned_numel = shape.numel()
|
417 |
+
total_numel += unpartitioned_numel
|
418 |
+
total_params += 1
|
419 |
+
|
420 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
421 |
+
|
422 |
+
if debug:
|
423 |
+
print(
|
424 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
425 |
+
)
|
426 |
+
|
427 |
+
# XXX: memory usage doubles here
|
428 |
+
state_dict[name] = torch.cat(
|
429 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
430 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
431 |
+
offset += partitioned_numel
|
432 |
+
|
433 |
+
offset *= world_size
|
434 |
+
|
435 |
+
# Sanity check
|
436 |
+
if offset != avail_numel:
|
437 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
438 |
+
|
439 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
440 |
+
|
441 |
+
|
442 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
443 |
+
state_dict = OrderedDict()
|
444 |
+
|
445 |
+
# buffers
|
446 |
+
buffers = zero_model_states[0].buffers
|
447 |
+
state_dict.update(buffers)
|
448 |
+
if debug:
|
449 |
+
print(f"added {len(buffers)} buffers")
|
450 |
+
|
451 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
452 |
+
|
453 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
454 |
+
|
455 |
+
# recover shared parameters
|
456 |
+
for pair in zero_model_states[0].shared_params:
|
457 |
+
if pair[1] in state_dict:
|
458 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
459 |
+
|
460 |
+
return state_dict
|
461 |
+
|
462 |
+
|
463 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
464 |
+
"""
|
465 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
466 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
467 |
+
via a model hub.
|
468 |
+
|
469 |
+
Args:
|
470 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
471 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
472 |
+
|
473 |
+
Returns:
|
474 |
+
- pytorch ``state_dict``
|
475 |
+
|
476 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
477 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
478 |
+
the checkpoint.
|
479 |
+
|
480 |
+
A typical usage might be ::
|
481 |
+
|
482 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
483 |
+
# do the training and checkpoint saving
|
484 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
485 |
+
model = model.cpu() # move to cpu
|
486 |
+
model.load_state_dict(state_dict)
|
487 |
+
# submit to model hub or save the model to share with others
|
488 |
+
|
489 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
490 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
491 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
492 |
+
|
493 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
494 |
+
|
495 |
+
"""
|
496 |
+
if tag is None:
|
497 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
498 |
+
if os.path.isfile(latest_path):
|
499 |
+
with open(latest_path, 'r') as fd:
|
500 |
+
tag = fd.read().strip()
|
501 |
+
else:
|
502 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
503 |
+
|
504 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
505 |
+
|
506 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
507 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
508 |
+
|
509 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
510 |
+
|
511 |
+
|
512 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
513 |
+
"""
|
514 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
515 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
516 |
+
|
517 |
+
Args:
|
518 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
519 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
520 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
521 |
+
"""
|
522 |
+
|
523 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
524 |
+
print(f"Saving fp32 state dict to {output_file}")
|
525 |
+
torch.save(state_dict, output_file)
|
526 |
+
|
527 |
+
|
528 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
529 |
+
"""
|
530 |
+
1. Put the provided model to cpu
|
531 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
532 |
+
3. Load it into the provided model
|
533 |
+
|
534 |
+
Args:
|
535 |
+
- ``model``: the model object to update
|
536 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
537 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
538 |
+
|
539 |
+
Returns:
|
540 |
+
- ``model`: modified model
|
541 |
+
|
542 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
543 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
544 |
+
conveniently placed for you in the checkpoint folder.
|
545 |
+
|
546 |
+
A typical usage might be ::
|
547 |
+
|
548 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
549 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
550 |
+
# submit to model hub or save the model to share with others
|
551 |
+
|
552 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
553 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
554 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
555 |
+
|
556 |
+
"""
|
557 |
+
logger.info(f"Extracting fp32 weights")
|
558 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
559 |
+
|
560 |
+
logger.info(f"Overwriting model with fp32 weights")
|
561 |
+
model = model.cpu()
|
562 |
+
model.load_state_dict(state_dict, strict=False)
|
563 |
+
|
564 |
+
return model
|
565 |
+
|
566 |
+
|
567 |
+
if __name__ == "__main__":
|
568 |
+
|
569 |
+
parser = argparse.ArgumentParser()
|
570 |
+
parser.add_argument("checkpoint_dir",
|
571 |
+
type=str,
|
572 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
573 |
+
parser.add_argument(
|
574 |
+
"output_file",
|
575 |
+
type=str,
|
576 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
577 |
+
parser.add_argument("-t",
|
578 |
+
"--tag",
|
579 |
+
type=str,
|
580 |
+
default=None,
|
581 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
582 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
583 |
+
args = parser.parse_args()
|
584 |
+
|
585 |
+
debug = args.debug
|
586 |
+
|
587 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|