|
--- |
|
library_name: transformers |
|
license: cc-by-nc-4.0 |
|
base_model: facebook/nougat-base |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: _Nougat_Ger_01 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# _Nougat_Ger_01 |
|
|
|
This model is a fine-tuned version of [facebook/nougat-base](https://huggingface.co/facebook/nougat-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.3141 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 6 |
|
- total_train_batch_size: 48 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 7.8593 | 1.0 | 84 | 1.3509 | |
|
| 6.4407 | 2.0 | 168 | 1.2018 | |
|
| 5.3764 | 3.0 | 252 | 1.1687 | |
|
| 4.8124 | 4.0 | 336 | 1.1438 | |
|
| 4.2572 | 5.0 | 420 | 1.1438 | |
|
| 4.0467 | 6.0 | 504 | 1.1760 | |
|
| 3.4963 | 7.0 | 588 | 1.1957 | |
|
| 3.0197 | 8.0 | 672 | 1.2227 | |
|
| 2.7683 | 9.0 | 756 | 1.2486 | |
|
| 2.3057 | 10.0 | 840 | 1.2624 | |
|
| 2.486 | 11.0 | 924 | 1.2799 | |
|
| 2.0421 | 12.0 | 1008 | 1.2846 | |
|
| 2.0073 | 13.0 | 1092 | 1.2923 | |
|
| 1.9756 | 14.0 | 1176 | 1.3006 | |
|
| 1.8417 | 15.0 | 1260 | 1.3083 | |
|
| 1.8013 | 16.0 | 1344 | 1.3110 | |
|
| 1.6453 | 17.0 | 1428 | 1.3132 | |
|
| 1.7862 | 18.0 | 1512 | 1.3141 | |
|
| 1.7968 | 19.0 | 1596 | 1.3137 | |
|
| 1.7583 | 19.768 | 1660 | 1.3141 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.1 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.3.0 |
|
- Tokenizers 0.21.0 |
|
|