buruzaemon's picture
Update README.md
74f17c5 verified
|
raw
history blame
2.39 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - clinc_oos
metrics:
  - accuracy
model-index:
  - name: distilbert-base-uncased-finetuned-clinc
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: clinc_oos
          type: clinc_oos
          args: plus
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9180645161290323

distilbert-base-uncased-finetuned-clinc

This model is a fine-tuned version of distilbert-base-uncased on the clinc_oos dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7719
  • Accuracy: 0.9181

Model description

This is an initial example of knowledge-distillation where the student loss is all cross-entropy loss LCEL_{CE} of the ground-truth labels and none of the distillation loss LKDL_{KD}.

Intended uses & limitations

More information needed

Training and evaluation data

The training and evaluation data come straight from the train and validation splits in the clinc_oos dataset, respectively; and tokenized using the distilbert-base-uncased tokenization.

Training procedure

Please see page 224 in Chapter 8: Making Transformers Efficient in Production, Natural Language Processing with Transformers, May 2022.

Training hyperparameters

The following hyperparameters were used during training:

  • alpha: 1.0
  • temperature: 2.0
  • learning_rate: 2e-05
  • train_batch_size: 48
  • eval_batch_size: 48
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 318 3.2882 0.7426
3.7861 2.0 636 1.8744 0.8381
3.7861 3.0 954 1.1567 0.8958
1.6922 4.0 1272 0.8569 0.9132
0.9055 5.0 1590 0.7719 0.9181

Framework versions

  • Transformers 4.16.2
  • Pytorch 2.1.2+cu121
  • Datasets 1.16.1
  • Tokenizers 0.15.1