Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- code
|
5 |
+
|
6 |
+
---
|
7 |
+
|
8 |
+
|
9 |
+
# Bud Code Millenials 3B
|
10 |
+
|
11 |
+
Welcome to our Code Model repository! Our model is specifically fine-tuned for code generation tasks. Bud Millenial Code Gen open-source models are currently the State of the Art (SOTA) for code generation, beating all the existing models of all sizes. We have achieved a HumanEval value of 80.48 @ Pass 1, beating proprietary models like Gemini Ultra, Claude, GPT-3.5 etc. by a large margin, and on par with GPT-4 (HumanEval ~ 82. Ref. WizardCoder). Our proprietary model (Bud Code Jr) beats GPT-4 as well with a HumanEval value of 88.2 & a context size of 168K, we will be releasing an API for Researchers, Enterprises, and potential Partners by January 2024 end. If interested, please reach out to jithinvg@bud.studio
|
12 |
+
|
13 |
+
### News 🔥🔥🔥
|
14 |
+
|
15 |
+
- [2024/01/03] We released **Code Millenials 34B** , which achieves the **80.48 pass@1** on the [HumanEval Benchmarks](https://github.com/openai/human-eval).
|
16 |
+
- [2024/01/02] We released **Code Millenials 13B** , which achieves the **76.21 pass@1** on the [HumanEval Benchmarks](https://github.com/openai/human-eval).
|
17 |
+
|
18 |
+
|
19 |
+
### HumanEval
|
20 |
+
|
21 |
+
<p align="center" width="100%">
|
22 |
+
<a ><img src="https://raw.githubusercontent.com/BudEcosystem/code-millenials/main/assets/result.png" alt="CodeMillenials" style="width: 100%; min-width: 300px; display: block; margin: auto;"></a>
|
23 |
+
</p>
|
24 |
+
|
25 |
+
For the millenial models, the eval script in the github repo is used for the above result.
|
26 |
+
|
27 |
+
Note: The humaneval values of other models are taken from the official repos of [WizardCoder](https://github.com/nlpxucan/WizardLM), [DeepseekCoder](https://github.com/deepseek-ai/deepseek-coder), [Gemini](https://deepmind.google/technologies/gemini/#capabilities) etc.
|
28 |
+
|
29 |
+
|
30 |
+
### Models
|
31 |
+
|
32 |
+
| Model | Checkpoint | HumanEval (+) | MBPP (+) |
|
33 |
+
|---------|-------------|---------------|----------|
|
34 |
+
|Code Millenials 34B | <a href="https://huggingface.co/budecosystem/code-millenials-34b" target="_blank">HF Link</a> | 80.48 (75) | 74.68 (62.9) |
|
35 |
+
|Code Millenials 13B | <a href="https://huggingface.co/budecosystem/code-millenials-13b" target="_blank">HF Link</a> | 76.21 (69.5) | 70.17 (57.6) |
|
36 |
+
|Code Millenials 3B | <a href="https://huggingface.co/budecosystem/code-millenials-3b" target="_blank">HF Link</a> | - | - |
|
37 |
+
|Code Millenials 1B | <a href="https://huggingface.co/budecosystem/code-millenials-1b" target="_blank">HF Link</a> | - | - |
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
### 🚀 Quick Start
|
43 |
+
|
44 |
+
Inference code using the pre-trained model from the Hugging Face model hub
|
45 |
+
|
46 |
+
```python
|
47 |
+
import torch
|
48 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
49 |
+
|
50 |
+
tokenizer = AutoTokenizer.from_pretrained("budecosystem/code-millenials-3b")
|
51 |
+
model = AutoModelForCausalLM.from_pretrained("budecosystem/code-millenials-3b")
|
52 |
+
|
53 |
+
template = """A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
|
54 |
+
### Instruction: {instruction} ### Response:"""
|
55 |
+
|
56 |
+
instruction = <Your code instruction here>
|
57 |
+
|
58 |
+
prompt = template.format(instruction=instruction)
|
59 |
+
|
60 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
61 |
+
sample = model.generate(**inputs, max_length=128)
|
62 |
+
print(tokenizer.decode(sample[0]))
|
63 |
+
|
64 |
+
```
|
65 |
+
|
66 |
+
|
67 |
+
## Training details
|
68 |
+
|
69 |
+
The model is trained of 8 A100 80GB for approximately 6hrs.
|
70 |
+
|
71 |
+
| Hyperparameters | Value |
|
72 |
+
| :----------------------------| :-----: |
|
73 |
+
| per_device_train_batch_size | 3 |
|
74 |
+
| gradient_accumulation_steps | 1 |
|
75 |
+
| epoch | 3 |
|
76 |
+
| steps | 26289 |
|
77 |
+
| learning_rate | 2e-5 |
|
78 |
+
| lr schedular type | cosine |
|
79 |
+
| warmup ratio | 0.15 |
|
80 |
+
| optimizer | adamw |
|
81 |
+
| fp16 | True |
|
82 |
+
| GPU | 8 A100 80GB |
|
83 |
+
|
84 |
+
### Important Note
|
85 |
+
|
86 |
+
- **Bias, Risks, and Limitations:** Model may sometimes make errors, produce misleading contents, or struggle to manage tasks that are not related to coding.
|