license: other
license_name: bria-rmbg-1.4
license_link: https://bria.ai/bria-huggingface-model-license-agreement/
tags:
- remove background
- background
- background removal
- Pytorch
- vision
- legal liability
extra_gated_prompt: >-
This model weights by BRIA AI can be obtained after a commercial license is
agreed upon. Fill in the form below and we reach out to you.
extra_gated_fields:
Name: text
Company/Org name: text
Org Type (Early/Growth Startup, Enterprise, Academy): text
Role: text
Country: text
Email: text
By submitting this form, I agree to BRIA’s Privacy policy and Terms & conditions, see links below: checkbox
BRIA Background Removal v1.4 Model Card
RMBG v1.4 is our state-of-the-art background removal model, designed to effectively separate foreground from background in a range of categories and image types. This model has been trained on a carefully selected dataset, which includes: general stock images, e-commerce, gaming, and advertising content, making it suitable for commercial use cases powering enterprise content creation at scale. The accuracy, efficiency, and versatility currently rival leading open source models. It is ideal where content safety, legally licensed datasets, and bias mitigation are paramount.
Developed by BRIA AI, RMBG v1.4 is available as an open-source model for non-commercial use.
Model Description
Developed by: BRIA AI
Model type: Background Removal
License: bria-rmbg-1.4
- The model is released under an open-source license for non-commercial use.
- Commercial use is subject to a commercial agreement with BRIA. Contact Us for more information.
Model Description: BRIA RMBG 1.4 is a saliency segmentation model trained exclusively on a professional-grade dataset.
BRIA: Resources for more information: BRIA AI
Training data
Bria-RMBG model was trained with over 12,000 high-quality, high-resolution, manually labeled (pixel-wise accuracy), fully licensed images. Our benchmark included balanced gender, balanced ethnicity, and people with different types of disabilities. For clarity, we provide our data distribution according to different categories, demonstrating our model’s versatility.
Distribution of images:
Category | Distribution |
---|---|
Objects only | 45.11% |
People with objects/animals | 25.24% |
People only | 17.35% |
people/objects/animals with text | 8.52% |
Text only | 2.52% |
Animals only | 1.89% |
Category | Distribution |
---|---|
Photorealistic | 87.70% |
Non-Photorealistic | 12.30% |
Category | Distribution |
---|---|
Non Solid Background | 52.05% |
Solid Background | 47.95% |
Category | Distribution |
---|---|
Single main foreground object | 51.42% |
Multiple objects in the foreground | 48.58% |
Qualitative Evaluation
Architecture
RMBG v1.4 is developed on the IS-Net enhanced with our unique training scheme and proprietary dataset. These modifications significantly improve the model’s accuracy and effectiveness in diverse image-processing scenarios.
Installation
git clone https://huggingface.co/briaai/RMBG-1.4
cd RMBG-1.4/
pip install -r requirements.txt
Usage
from skimage import io
import torch, os
from PIL import Image
from briarmbg import BriaRMBG
from utilities import preprocess_image, postprocess_image
from huggingface_hub import hf_hub_download
model_path = hf_hub_download("briaai/RMBG-1.4", 'model.pth')
im_path = f"{os.path.dirname(os.path.abspath(__file__))}/example_input.jpg"
net = BriaRMBG()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net.load_state_dict(torch.load(model_path, map_location=device))
net.to(device)
net.eval()
# prepare input
model_input_size = [1024,1024]
orig_im = io.imread(im_path)
orig_im_size = orig_im.shape[0:2]
image = preprocess_image(orig_im, model_input_size).to(device)
# inference
result=net(image)
# post process
result_image = postprocess_image(result[0][0], orig_im_size)
# save result
pil_im = Image.fromarray(result_image)
no_bg_image = Image.new("RGBA", pil_im.size, (0,0,0,0))
orig_image = Image.open(im_path)
no_bg_image.paste(orig_image, mask=pil_im)
no_bg_image.save("example_image_no_bg.png")