vicuna_mc_finetune / README.md
brettbbb's picture
End of training
5bc7828
|
raw
history blame
2.65 kB
metadata
license: llama2
base_model: lmsys/vicuna-7b-v1.5
tags:
  - generated_from_trainer
datasets:
  - truthful_qa
metrics:
  - accuracy
model-index:
  - name: vicuna_mc_finetune
    results: []

vicuna_mc_finetune

This model is a fine-tuned version of lmsys/vicuna-7b-v1.5 on the truthful_qa dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8867
  • Accuracy: 0.2378

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 6
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 5
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.7307 1.0 109 1.5327 0.4024
1.4519 2.0 218 1.2341 0.7073
0.0207 3.0 327 2.2924 0.6280
1.5647 4.0 436 1.9344 0.2256
2.2047 5.0 545 1.9401 0.2256
2.016 6.0 654 1.8888 0.2256
1.625 7.0 763 1.9068 0.1768
2.0002 8.0 872 1.8909 0.1951
1.7906 9.0 981 1.8828 0.2195
1.5295 10.0 1090 1.8967 0.2195
1.7018 11.0 1199 1.8845 0.2378
1.8412 12.0 1308 1.8808 0.2073
2.4396 13.0 1417 1.8816 0.2012
1.8643 14.0 1526 1.8827 0.2012
1.7271 15.0 1635 1.8844 0.2256
1.851 16.0 1744 1.8720 0.2134
1.7633 17.0 1853 1.8786 0.2134
2.6586 18.0 1962 1.8723 0.25
2.0078 19.0 2071 1.8770 0.2439
1.4072 20.0 2180 1.8867 0.2378

Framework versions

  • Transformers 4.36.0.dev0
  • Pytorch 2.1.0+cu121
  • Datasets 2.13.1
  • Tokenizers 0.14.1