deplot_kr / README.md
dltjwl
ADD : Adding image and Modifying Widget
e5288c0
|
raw
history blame
2.53 kB
---
language:
- ko
pipeline_tag: image-to-text
widget:
- src: sample.jpg
output:
text: "๋Œ€์ƒ:<\n>์ œ๋ชฉ: 2011-2021 ๋ณด๊ฑด๋ณต์ง€ ๋ถ„์•ผ ์ผ์ž๋ฆฌ์˜ <unk>์ฆ<\n>์œ ํ˜•: ๋‹จ์ผํ˜• ์ผ๋ฐ˜ ์„ธ๋กœ <unk>๋Œ€ํ˜•<\n>| ๋ณด๊ฑด(์ฒœ ๋ช…) | ๋ณต์ง€(์ฒœ ๋ช…)<\n>1๋ถ„์œ„ | 29.7 | 178.4<\n>2๋ถ„์œ„ | 70.8 | 97.3<\n>3๋ถ„์œ„ | 86.4 | 61.3<\n>4๋ถ„์œ„ | 28.2 | 16.0<\n>5๋ถ„์œ„ | 52.3 | 0.9"
---
# **deplot_kr**
deplot_kr is a Image-to-Data(Text) model based on the google's pix2struct architecture.
It was fine-tuned from [DePlot](https://huggingface.co/google/deplot), using korean chart image-text pairs.
deplot_kr์€ google์˜ pix2struct ๊ตฌ์กฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ํ•œ๊ตญ์–ด image-to-data(ํ…์ŠคํŠธ ํ˜•ํƒœ์˜ ๋ฐ์ดํ„ฐ ํ…Œ์ด๋ธ”) ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค.
[DePlot](https://huggingface.co/google/deplot) ๋ชจ๋ธ์„ ํ•œ๊ตญ์–ด ์ฐจํŠธ ์ด๋ฏธ์ง€-ํ…์ŠคํŠธ ์Œ ๋ฐ์ดํ„ฐ์„ธํŠธ(30๋งŒ ๊ฐœ)๋ฅผ ์ด์šฉํ•˜์—ฌ fine-tuning ํ–ˆ์Šต๋‹ˆ๋‹ค.
## **How to use**
You can run a prediction by input an image.
Model predict the data table of text form in the image.
์ด๋ฏธ์ง€๋ฅผ ๋ชจ๋ธ์— ์ž…๋ ฅํ•˜๋ฉด ๋ชจ๋ธ์€ ์ด๋ฏธ์ง€๋กœ๋ถ€ํ„ฐ ํ‘œ ํ˜•ํƒœ์˜ ๋ฐ์ดํ„ฐ ํ…Œ์ด๋ธ”์„ ์˜ˆ์ธกํ•ฉ๋‹ˆ๋‹ค.
```python
from transformers import Pix2StructForConditionalGeneration, Pix2StructImageProcessor, AutoTokenizer, Pix2StructProcessor
from PIL import Image
image_processor = Pix2StructImageProcessor()
tokenizer = AutoTokenizer.from_pretrained("brainventures/deplot_kr")
processor = Pix2StructProcessor(image_processor=image_processor, tokenizer=tokenizer)
model = Pix2StructForConditionalGeneration.from_pretrained("brainventures/deplot_kr")
image_path = "IMAGE_PATH"
image = Image.open(image_path)
inputs = processor(images=image, return_tensors="pt")
pred = model.generate(flattened_patches=flattened_patches, attention_mask=attention_mask, max_length=1024)
print(processor.batch_decode(deplot_generated_ids, skip_special_token=True)[0])
```
### Preprocessing
According to [Liu et al.(2023)](https://arxiv.org/pdf/2212.10505.pdf)...
- markdown format
- | : seperating cells (์—ด ๊ตฌ๋ถ„)
- \n : seperating rows (ํ–‰ ๊ตฌ๋ถ„)
### Train
The model was trained in a TPU environment.
- num_warmup_steps : 1,000
- num_training_steps : 40,000
## Evaluation Results
This model achieves the following results:
|metrics name | % |
|:---|---:|
| RNSS (Relative Number Set Similarity)| 99.5483 |
| RMS F1 (Relative Mapping Similarity)| 16.6401 |
## Contact
For questions and comments, please use the discussion tab or email gloria@brainventur.com