|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
base_model: bert-base-cased |
|
model-index: |
|
- name: bertBasev2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bertBasev2 |
|
|
|
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0328 |
|
- Precision: 0.9539 |
|
- Recall: 0.9707 |
|
- F1: 0.9622 |
|
- Accuracy: 0.9911 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 7 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 1.2004 | 1.0 | 1012 | 0.9504 | 0.2620 | 0.3519 | 0.3004 | 0.6856 | |
|
| 1.0265 | 2.0 | 2024 | 0.6205 | 0.4356 | 0.5161 | 0.4725 | 0.7956 | |
|
| 0.6895 | 3.0 | 3036 | 0.3269 | 0.6694 | 0.7302 | 0.6985 | 0.9044 | |
|
| 0.44 | 4.0 | 4048 | 0.1325 | 0.8356 | 0.9091 | 0.8708 | 0.9667 | |
|
| 0.2585 | 5.0 | 5060 | 0.0717 | 0.9259 | 0.9531 | 0.9393 | 0.9844 | |
|
| 0.1722 | 6.0 | 6072 | 0.0382 | 0.9480 | 0.9619 | 0.9549 | 0.99 | |
|
| 0.0919 | 7.0 | 7084 | 0.0328 | 0.9539 | 0.9707 | 0.9622 | 0.9911 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.18.0 |
|
- Pytorch 1.10.0+cu111 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.12.1 |
|
|