botbottingbot commited on
Commit
691ed73
·
verified ·
1 Parent(s): 4afedc8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +41 -124
README.md CHANGED
@@ -1,146 +1,63 @@
1
  ---
2
  license: mit
3
- language:
4
- - en
5
- pipeline_tag: text-generation
6
- library_name: transformers
7
  tags:
8
- - Modular
9
- - Intelligence
10
- ---
11
- # Modular Intelligence
12
- A Small but Complete Reasoning System Built on Top of a Language Model
13
-
14
- ## System-Level View (60 Seconds)
15
-
16
- This repository is not a standard GPT-2 model.
17
- It is a compact reasoning system built on top of an LLM, using:
18
-
19
- - Modules – structured reasoning lenses
20
- - Checkers – strict second-pass reviewers
21
- - Contracts – fixed output sections for every module
22
- - Optional Router – automatic module selection from free-form tasks
23
-
24
- Pipeline:
25
-
26
- **Task → Lens (Module) → Structured Output → Checker (Optional)**
27
-
28
- The LLM engine is replaceable; the architecture is the system.
29
-
30
- ---
31
-
32
- ## Architecture
33
-
34
- +—————————————————————+
35
- | MODULAR INTELLIGENCE |
36
- +—————————————————————+
37
- | User Task |
38
- | | |
39
- | v |
40
- | [Auto-router or manual module selection] |
41
- | | |
42
- | v |
43
- | +———————–+ +————————+ |
44
- | | GENERATOR MODULE | ––> | CHECKER MODULE | |
45
- | | (structured output) | | (optional verification)| |
46
- | +———————–+ +————————+ |
47
- | | ^ |
48
- | v | |
49
- | Structured Output Feedback / Fix Ideas |
50
- +—————————————————————+
51
-
52
- ---
53
-
54
- ## Repository Contents
55
-
56
- - `modules.json` — all modules, inputs, sections, checkers
57
- - `app.py` — Gradio UI with optional auto-routing
58
- - Model card
59
- - GPT-2 base model (fully swappable)
60
-
61
  ---
62
 
63
- ## Problem This Solves
64
-
65
- Standard LLMs: unstructured text, drift, no audit trail.
66
- Modular Intelligence: task decomposition, structured reasoning, verification, consistency, interpretability.
67
-
68
- ---
69
 
70
- ## Modules (Lenses)
 
71
 
72
- | Module | Use |
73
- |--------|-----|
74
- | Analysis Note | Explain or break down text/situations |
75
- | Document Explainer | Summaries of contracts/policies/articles |
76
- | Strategy Memo | Options → Recommendation → Risks → Next Steps |
77
- | Message/Post Reply | Structured replies |
78
- | Profile/Application | Bios, cover letters, statements |
79
- | System Blueprint | Design or improve systems and workflows |
80
- | Modular Brainstorm | Decompose problems into modules/checkers |
81
 
82
  ---
83
 
84
- ## Checker Layer
85
-
86
- Checkers produce:
87
 
88
- - VERDICT
89
- - ALIGNMENT
90
- - STRUCTURE
91
- - GAPS
92
- - FIXES
 
 
 
 
93
 
94
- Implements: **Reason → Critique → Refine**.
95
-
96
- ---
 
 
 
97
 
98
- ## End-to-End Example
 
 
99
 
100
- Task: “Should we expand into a new city in 6 months?”
101
-
102
- 1. Select `strategy_memo_v1`
103
- 2. Fill: context, objective, constraints
104
- 3. Run → structured memo with required sections
105
- 4. Run checker → verdict + issues + fixes
106
 
107
  ---
108
 
109
- ## Auto-Routing (Optional)
110
-
111
- The provided `app.py` includes an **Auto-Route** tab:
112
 
113
- 1. Paste free-form task
114
- 2. Zero-shot classifier ranks modules
115
- 3. Jump directly to best lens
116
-
117
- ---
118
-
119
- ## Code Usage
120
 
121
  ```python
122
- from transformers import AutoTokenizer, AutoModelForCausalLM
123
-
124
- tok = AutoTokenizer.from_pretrained("botbottingbot/Modular_Intelligence")
125
- model = AutoModelForCausalLM.from_pretrained("botbottingbot/Modular_Intelligence")
126
-
127
- prompt = """
128
- MODULE: Strategy Memo
129
- INPUTS:
130
- CONTEXT: We are expanding to City X.
131
- OBJECTIVE: Decide whether to enter within 6 months.
132
- CONSTRAINTS: Budget limits; regulatory uncertainty.
133
 
134
- OUTPUT SECTIONS:
135
- - CONTEXT
136
- - OBJECTIVE
137
- - CONSTRAINTS
138
- - OPTIONS
139
- - RECOMMENDATION
140
- - RISKS
141
- - NEXT_ACTIONS
142
- """
143
 
144
- inp = tok(prompt, return_tensors="pt")
145
- out = model.generate(**inp, max_new_tokens=250)
146
- print(tok.decode(out[0], skip_special_tokens=
 
1
  ---
2
  license: mit
 
 
 
 
3
  tags:
4
+ - modular-intelligence
5
+ - reasoning
6
+ - structure
7
+ - transformers
8
+ - experimental
9
+ base_model: openai-community/gpt2
10
+ pipeline_tag: text-generation
11
+ language: en
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  ---
13
 
14
+ # Modular Intelligence
 
 
 
 
 
15
 
16
+ Modular Intelligence is a lightweight reasoning framework built on top of a language model.
17
+ It provides **Modules** (task-specific lenses), **Checkers** (second-pass reviewers), **Contracts** (structured output sections), and optional **Routing** (automatic module selection).
18
 
19
+ The base model is GPT-2, but the architecture is model-agnostic—any LLM can be plugged in.
 
 
 
 
 
 
 
 
20
 
21
  ---
22
 
23
+ ## Features
 
 
24
 
25
+ ### Modules
26
+ Task-specific reasoning modes.
27
+ Examples:
28
+ - **Analysis Note** – explanation and breakdown of concepts
29
+ - **Document Explainer** – summaries of contracts, policies, articles
30
+ - **Strategy Memo** – Options → Recommendation → Risks → Next Steps
31
+ - **System Blueprint** – workflow / system design
32
+ - **Brainstorm** – structured idea generation
33
+ - **Message Reply** – concise responses for emails, posts, chats
34
 
35
+ ### Checkers
36
+ A second pass that evaluates:
37
+ - correctness
38
+ - clarity
39
+ - missing pieces
40
+ - contradictions
41
 
42
+ ### Contracts
43
+ Every module produces a fixed output template.
44
+ This ensures reproducible structure and reduces variance.
45
 
46
+ ### Router
47
+ Optional automatic module selection based on prompt classification.
 
 
 
 
48
 
49
  ---
50
 
51
+ ## Usage
 
 
52
 
53
+ ### Python
 
 
 
 
 
 
54
 
55
  ```python
56
+ from app import run_module
 
 
 
 
 
 
 
 
 
 
57
 
58
+ result = run_module(
59
+ module="StrategyMemo",
60
+ prompt="Should we expand operations to Region X next quarter?"
61
+ )
 
 
 
 
 
62
 
63
+ print(result)