metadata
license: apache-2.0
language:
- ko
albert-small-kor-cross-encoder-v1
- albert-small-kor-v1 ๋ชจ๋ธ์ ํ๋ จ์์ผ cross-encoder๋ก ํ์ธํ๋ํ ๋ชจ๋ธ
- This model was trained using SentenceTransformers Cross-Encoder class.
Training
sts(10)-nli(3)-sts(10)-nli(3)-sts(10) ํ๋ จ ์ํด (distil ํ๋ จ ์์)
STS : seed=111,epoch=10, lr=1e-4, eps=1e-6, warm_step=10%, max_seq_len=128, train_batch=128(small ๋ชจ๋ธ=32) (albert 13m/7G) ํ๋ จ์ฝ๋
NLI ํ๋ จ : seed=111,epoch=3, lr=3e-5, eps=1e-8, warm_step=10%, max_seq_len=128, train_batch=64, eval_bath=64(albert 2h/7G) ํ๋ จ์ฝ๋
๋ชจ๋ธ korsts klue-sts glue(stsb) stsb_multi_mt(en) albert-small-kor-cross-encoder-v1 0.8455 0.8526 0.8513 0.7976 klue-cross-encoder-v1 0.8262 0.8833 0.8512 0.7889 kpf-cross-encoder-v1 0.8799 0.9133 0.8626 0.8027
Usage and Performance
Pre-trained models can be used like this:
from sentence_transformers import CrossEncoder
model = CrossEncoder('bongsoo/albert-small-kor-cross-encoder-v1')
scores = model.predict([('์ค๋ ๋ ์จ๊ฐ ์ข๋ค', '์ค๋ ๋ฑ์ฐ์ ํ๋ค'), ('์ค๋ ๋ ์จ๊ฐ ํ๋ฆฌ๋ค', '์ค๋ ๋น๊ฐ ๋ด๋ฆฐ๋ค')])
print(scores)
[0.45417202 0.6294121 ]
The model will predict scores for the pairs ('Sentence 1', 'Sentence 2')
and ('Sentence 3', 'Sentence 4')
.
You can use this model also without sentence_transformers and by just using Transformers AutoModel
class