metadata
language:
- fr
license: apache-2.0
tags:
- automatic-speech-recognition
- polinaeterna/voxpopuli
- generated_from_trainer
- hf-asr-leaderboard
- robust-speech-event
datasets:
- polinaeterna/voxpopuli
model-index:
- name: Fine-tuned Wav2Vec2 XLS-R 1B model for ASR in French
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Voxpopuli
type: polinaeterna/voxpopuli
args: fr
metrics:
- name: Test WER
type: wer
value: 11.7
- name: Test CER
type: cer
value: 5.8
- name: Test WER (+LM)
type: wer
value: 10.01
- name: Test CER (+LM)
type: cer
value: 5.63
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 9
type: mozilla-foundation/common_voice_9_0
args: fr
metrics:
- name: Test WER
type: wer
value: 45.74
- name: Test CER
type: cer
value: 22.99
- name: Test WER (+LM)
type: wer
value: 38.81
- name: Test CER (+LM)
type: cer
value: 23.25
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: fr
metrics:
- name: Test WER
type: wer
value: 27.86
- name: Test CER
type: cer
value: 13.2
- name: Test WER (+LM)
type: wer
value: 22.53
- name: Test CER (+LM)
type: cer
value: 12.82
Fine-tuned Wav2Vec2 XLS-R 1B model for ASR in French
This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the POLINAETERNA/VOXPOPULI - FR dataset. It achieves the following results on the evaluation set:
- Loss: 0.2906
- Wer: 0.1093
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 12.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.4628 | 0.93 | 500 | 0.3834 | 0.1625 |
0.3577 | 1.85 | 1000 | 0.3231 | 0.1367 |
0.3103 | 2.78 | 1500 | 0.2918 | 0.1287 |
0.2884 | 3.7 | 2000 | 0.2845 | 0.1227 |
0.2615 | 4.63 | 2500 | 0.2819 | 0.1189 |
0.242 | 5.56 | 3000 | 0.2915 | 0.1165 |
0.2268 | 6.48 | 3500 | 0.2768 | 0.1187 |
0.2188 | 7.41 | 4000 | 0.2719 | 0.1128 |
0.1979 | 8.33 | 4500 | 0.2741 | 0.1134 |
0.1834 | 9.26 | 5000 | 0.2827 | 0.1096 |
0.1719 | 10.19 | 5500 | 0.2906 | 0.1093 |
0.1723 | 11.11 | 6000 | 0.2868 | 0.1104 |
Framework versions
- Transformers 4.23.0.dev0
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
Evaluation
- To evaluate on
mozilla-foundation/common_voice_9_0
python eval.py \
--model_id "bhuang/wav2vec2-xls-r-1b-voxpopuli-fr" \
--dataset "polinaeterna/voxpopuli" \
--config "fr" \
--split "test" \
--log_outputs \
--outdir "outputs/results_polinaeterna_voxpopuli_with_lm"
- To evaluate on
mozilla-foundation/common_voice_9_0
python eval.py \
--model_id "bhuang/wav2vec2-xls-r-1b-voxpopuli-fr" \
--dataset "mozilla-foundation/common_voice_9_0" \
--config "fr" \
--split "test" \
--log_outputs \
--outdir "outputs/results_mozilla-foundatio_common_voice_9_0_with_lm"
- To evaluate on
speech-recognition-community-v2/dev_data
python eval.py \
--model_id "bhuang/wav2vec2-xls-r-1b-voxpopuli-fr" \
--dataset "speech-recognition-community-v2/dev_data" \
--config "fr" \
--split "validation" \
--chunk_length_s 5.0 \
--stride_length_s 1.0 \
--log_outputs \
--outdir "outputs/results_speech-recognition-community-v2_dev_data_with_lm"