metadata
base_model: bobox/DeBERTa-small-ST-v1-test-step3
datasets: []
language: []
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:260034
- loss:CachedGISTEmbedLoss
widget:
- source_sentence: who used to present one man and his dog
sentences:
- >-
One Man and His Dog One Man and His Dog is a BBC television series in
the United Kingdom featuring sheepdog trials, originally presented by
Phil Drabble, with commentary by Eric Halsall and, later, by Ray
Ollerenshaw. It was first aired on 17 February 1976 and continues today
(since 2013) as a special annual edition of Countryfile. In 1994, Robin
Page replaced Drabble as the main presenter. Gus Dermody took over as
commentator until 2012.
- "animal adjectives [was: ratto, Ratte, raton] - Google Groups animal adjectives [was: ratto, Ratte, raton] Showing 1-9 of 9 messages While trying find the pronunciation of the word \"munger\", I encountered the nearby word \_ \_murine [MYOO-ryn] = relating to mice or rats \_ \_[from Latin _murinus_, which derives from _mus_, \_ \_mouse, whose genetive form is _muris_] So if you need an adjective to refer to lab rodents like _ratto_ or _mausu_, \"murine\" it is. (I would never have discovered this except in an alphabetically arranged dictionary.) There are a lot of animal adjectives of this type, such as ovine (sheep), equine (horse), bovine (bull, cow, calf), aquiline (eagle), murine (rats and mice). \_ But what is needed is a way to lookup an animal and find what the proper adjective is. \_For example, is there an adjective form for \"goat\"? for \"seal\"? for \"elephant\"? for \"whale\"? for \"walrus\"? By the way, I never did find out how \"munger\" is pronounced; the answer is not found in"
- >-
A boat is docked and filled with bicycles next to a grassy area on a
body of water.
- source_sentence: There were 29 Muslims fatalities in the Cave of the Patriarchs massacre .
sentences:
- >-
Urban Dictionary: Dog and Bone Dog and Bone Cockney rhyming slang for
phone - the telephone. ''Pick up the dog and bone now'' by Brendan April
05, 2003 Create a mug The Urban Dictionary Mug One side has the word,
one side has the definition. Microwave and dishwasher safe. Lotsa space
for your liquids. Buy the t-shirt The Urban Dictionary T-Shirt Smooth,
soft, slim fit American Apparel shirt. Custom printed. 100% fine jersey
cotton, except for heather grey (90% cotton). ^Same as above except can
be shortened further to 'Dogs' or just 'dog' Get on the dogs and give us
a bell when your ready. by Phaze October 14, 2004
- >-
RAF College Cranwell - Local Area Information RAF College Cranwell Local
Area Information Local Area Information RAF College Cranwell is situated
in the North Kesteven District Council area in the heart of rural
Lincolnshire, 5 miles from Sleaford and 14 miles from the City of
Lincoln, surrounded by bustling market towns, picturesque villages and
landscapes steeped in aviation history. Lincolnshire is currently home
to several operational RAF airfields and was a key location during WWII
for bomber stations. Museums, memorials, former airfields, heritage and
visitor centres bear witness to the bravery of the men and women of this
time. The ancient City of Lincoln dates back at least to Roman times and
boasts a spectacular Cathedral and Castle area, whilst Sleaford is the
home to the National Centre for Craft & Design. Please click on the Logo
to access website
- >-
29 Muslims were killed and more than 100 others wounded . [ Settlers
remember gunman Goldstein ; Hebron riots continue ] .
- source_sentence: What requires energy for growth?
sentences:
- >-
an organism requires energy for growth. Fish Fish are the ultimate
aquatic organism.
a fish require energy for growth
- >-
In August , after the end of the war in June 1902 , Higgins Southampton
left the `` SSBavarian '' and returned to Cape Town the following month
.
- >-
Rhinestone Cowboy "Rhinestone Cowboy" is a song written by Larry Weiss
and most famously recorded by American country music singer Glen
Campbell. The song enjoyed huge popularity with both country and pop
audiences when it was released in 1975.
- source_sentence: Burning wood is used to produce what type of energy?
sentences:
- >-
Shawnee Trails Council was formed from the merger of the Four Rivers
Council and the Audubon Council .
- A Mercedes parked next to a parking meter on a street.
- |-
burning wood is used to produce heat. Heat is kinetic energy.
burning wood is used to produce kinetic energy.
- source_sentence: >-
As of March , more than 413,000 cases have been confirmed in more than 190
countries with more than 107,000 recoveries .
sentences:
- >-
As of 24 March , more than 414,000 cases of COVID-19 have been reported
in more than 190 countries and territories , resulting in more than
18,500 deaths and more than 108,000 recoveries .
- >-
Pope Francis makes first visit as head of state to Italy\'s president -
YouTube Pope Francis makes first visit as head of state to Italy\'s
president Want to watch this again later? Sign in to add this video to a
playlist. Need to report the video? Sign in to report inappropriate
content. The interactive transcript could not be loaded. Loading...
Rating is available when the video has been rented. This feature is not
available right now. Please try again later. Published on Nov 14, 2013
Pope Francis stepped out of the Vatican, several hundred feet into the
heart of Rome, to meet with Italian President Giorgio Napolitano, and
the country\'s Council of Ministers. . --------------------- Suscríbete
al canal: http://smarturl.it/RomeReports Visita nuestra web:
http://www.romereports.com/ ROME REPORTS, www.romereports.com, is an
independent international TV News Agency based in Rome covering the
activity of the Pope, the life of the Vatican and current social,
cultural and religious debates. Reporting on the Catholic Church
requires proximity to the source, in-depth knowledge of the Institution,
and a high standard of creativity and technical excellence. As few
broadcasters have a permanent correspondent in Rome, ROME REPORTS is
geared to inform the public and meet the needs of television
broadcasting companies around the world through daily news packages,
weekly newsprograms and documentaries. ---------------------
- >-
German shepherds and retrievers are commonly used, but the Belgian
Malinois has proven to be one of the most outstanding working dogs used
in military service. Around 85 percent of military working dogs are
purchased in Germany or the Netherlands, where they have been breeding
dogs for military purposes for hundreds of years. In addition, the Air
Force Security Forces Center, Army Veterinary Corps and the 341st
Training Squadron combine efforts to raise their own dogs; nearly 15
percent of all military working dogs are now bred here.
model-index:
- name: SentenceTransformer based on bobox/DeBERTa-small-ST-v1-test-step3
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.875643593885091
name: Pearson Cosine
- type: spearman_cosine
value: 0.9063415240472948
name: Spearman Cosine
- type: pearson_manhattan
value: 0.9077403211524888
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.9055112293832712
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.9077080621981075
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.9061498543947556
name: Spearman Euclidean
- type: pearson_dot
value: 0.8591462310934479
name: Pearson Dot
- type: spearman_dot
value: 0.8674279304506193
name: Spearman Dot
- type: pearson_max
value: 0.9077403211524888
name: Pearson Max
- type: spearman_max
value: 0.9063415240472948
name: Spearman Max
SentenceTransformer based on bobox/DeBERTa-small-ST-v1-test-step3
This is a sentence-transformers model finetuned from bobox/DeBERTa-small-ST-v1-test-step3 on the bobox/enhanced_nli-50_k dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: bobox/DeBERTa-small-ST-v1-test-step3
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- bobox/enhanced_nli-50_k
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("bobox/DeBERTa-small-ST-v1-test-UnifiedDatasets-Ft2")
# Run inference
sentences = [
'As of March , more than 413,000 cases have been confirmed in more than 190 countries with more than 107,000 recoveries .',
'As of 24 March , more than 414,000 cases of COVID-19 have been reported in more than 190 countries and territories , resulting in more than 18,500 deaths and more than 108,000 recoveries .',
'German shepherds and retrievers are commonly used, but the Belgian Malinois has proven to be one of the most outstanding working dogs used in military service. Around 85 percent of military working dogs are purchased in Germany or the Netherlands, where they have been breeding dogs for military purposes for hundreds of years. In addition, the Air Force Security Forces Center, Army Veterinary Corps and the 341st Training Squadron combine efforts to raise their own dogs; nearly 15 percent of all military working dogs are now bred here.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.8756 |
spearman_cosine | 0.9063 |
pearson_manhattan | 0.9077 |
spearman_manhattan | 0.9055 |
pearson_euclidean | 0.9077 |
spearman_euclidean | 0.9061 |
pearson_dot | 0.8591 |
spearman_dot | 0.8674 |
pearson_max | 0.9077 |
spearman_max | 0.9063 |
Training Details
Training Dataset
bobox/enhanced_nli-50_k
- Dataset: bobox/enhanced_nli-50_k
- Size: 260,034 training samples
- Columns:
sentence1
andsentence2
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 type string string details - min: 4 tokens
- mean: 39.12 tokens
- max: 344 tokens
- min: 2 tokens
- mean: 60.17 tokens
- max: 442 tokens
- Samples:
sentence1 sentence2 Temple Meads Railway Station is in which English city?
Bristol Temple Meads station roof to be replaced - BBC News BBC News Bristol Temple Meads station roof to be replaced 17 October 2013 Image caption Bristol Temple Meads was designed by Isambard Kingdom Brunel Image caption It will cost Network Rail £15m to replace the station's roof Image caption A pact has been signed to redevelop the station over the next 25 years The entire roof on Bristol Temple Meads railway station is to be replaced. Network Rail says it has secured £15m to carry out maintenance of the roof and install new lighting and cables. The announcement was made as a pact was signed to "significantly transform" the station over the next 25 years. Network Rail, Bristol City Council, the West of England Local Enterprise Partnership, Homes and Communities Agency and English Heritage are supporting the plan. Each has signed the 25-year memorandum of understanding to redevelop the station. Patrick Hallgate, of Network Rail Western, said: "Our plans for Bristol will see the railway significantly transformed by the end of the decade, with more seats, better connections and more frequent services." The railway station was designed by Isambard Kingdom Brunel and opened in 1840.
Where do most of the digestion reactions occur?
Most of the digestion reactions occur in the small intestine.
Sacko, 22, joined Sporting from French top-flight side Bordeaux in 2014, but has so far been limited to playing for the Portuguese club's B team.
The former France Under-20 player joined Ligue 2 side Sochaux on loan in February and scored twice in 14 games.
He is Leeds' third signing of the transfer window, following the arrivals of Marcus Antonsson and Kyle Bartley.
Find all the latest football transfers on our dedicated page.Leeds have signed Sporting Lisbon forward Hadi Sacko on a season-long loan with a view to a permanent deal.
- Loss:
CachedGISTEmbedLoss
with these parameters:{'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.025}
Evaluation Dataset
bobox/enhanced_nli-50_k
- Dataset: bobox/enhanced_nli-50_k
- Size: 1,506 evaluation samples
- Columns:
sentence1
andsentence2
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 type string string details - min: 3 tokens
- mean: 31.16 tokens
- max: 340 tokens
- min: 2 tokens
- mean: 62.3 tokens
- max: 455 tokens
- Samples:
sentence1 sentence2 Interestingly, snakes use their forked tongues to smell.
Snakes use their tongue to smell things.
A voltaic cell generates an electric current through a reaction known as a(n) spontaneous redox.
A voltaic cell uses what type of reaction to generate an electric current
As of March 22 , there were more than 321,000 cases with over 13,600 deaths and more than 96,000 recoveries reported worldwide .
As of 22 March , more than 321,000 cases of COVID-19 have been reported in over 180 countries and territories , resulting in more than 13,600 deaths and 96,000 recoveries .
- Loss:
CachedGISTEmbedLoss
with these parameters:{'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.025}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 320per_device_eval_batch_size
: 128learning_rate
: 2e-05weight_decay
: 0.0001num_train_epochs
: 1lr_scheduler_type
: cosine_with_restartslr_scheduler_kwargs
: {'num_cycles': 3}warmup_ratio
: 0.25save_safetensors
: Falsefp16
: Truepush_to_hub
: Truehub_model_id
: bobox/DeBERTa-small-ST-v1-test-UnifiedDatasets-Ft2-checkpoints-tmphub_strategy
: all_checkpointsbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 320per_device_eval_batch_size
: 128per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0001adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: cosine_with_restartslr_scheduler_kwargs
: {'num_cycles': 3}warmup_ratio
: 0.25warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Falsesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Trueresume_from_checkpoint
: Nonehub_model_id
: bobox/DeBERTa-small-ST-v1-test-UnifiedDatasets-Ft2-checkpoints-tmphub_strategy
: all_checkpointshub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | loss | sts-test_spearman_cosine |
---|---|---|---|---|
0.0012 | 1 | 0.3208 | - | - |
0.0025 | 2 | 0.1703 | - | - |
0.0037 | 3 | 0.3362 | - | - |
0.0049 | 4 | 0.3346 | - | - |
0.0062 | 5 | 0.2484 | - | - |
0.0074 | 6 | 0.2249 | - | - |
0.0086 | 7 | 0.2724 | - | - |
0.0098 | 8 | 0.251 | - | - |
0.0111 | 9 | 0.2413 | - | - |
0.0123 | 10 | 0.382 | - | - |
0.0135 | 11 | 0.2695 | - | - |
0.0148 | 12 | 0.2392 | - | - |
0.0160 | 13 | 0.3603 | - | - |
0.0172 | 14 | 0.3282 | - | - |
0.0185 | 15 | 0.2878 | - | - |
0.0197 | 16 | 0.3046 | - | - |
0.0209 | 17 | 0.3946 | - | - |
0.0221 | 18 | 0.2038 | - | - |
0.0234 | 19 | 0.3542 | - | - |
0.0246 | 20 | 0.2369 | - | - |
0.0258 | 21 | 0.1967 | 0.1451 | 0.9081 |
0.0271 | 22 | 0.2368 | - | - |
0.0283 | 23 | 0.263 | - | - |
0.0295 | 24 | 0.3595 | - | - |
0.0308 | 25 | 0.3073 | - | - |
0.0320 | 26 | 0.2232 | - | - |
0.0332 | 27 | 0.1822 | - | - |
0.0344 | 28 | 0.251 | - | - |
0.0357 | 29 | 0.2677 | - | - |
0.0369 | 30 | 0.3252 | - | - |
0.0381 | 31 | 0.2058 | - | - |
0.0394 | 32 | 0.3083 | - | - |
0.0406 | 33 | 0.2109 | - | - |
0.0418 | 34 | 0.2751 | - | - |
0.0431 | 35 | 0.2269 | - | - |
0.0443 | 36 | 0.2333 | - | - |
0.0455 | 37 | 0.2747 | - | - |
0.0467 | 38 | 0.1285 | - | - |
0.0480 | 39 | 0.3659 | - | - |
0.0492 | 40 | 0.3991 | - | - |
0.0504 | 41 | 0.2647 | - | - |
0.0517 | 42 | 0.3627 | 0.1373 | 0.9084 |
0.0529 | 43 | 0.2026 | - | - |
0.0541 | 44 | 0.1923 | - | - |
0.0554 | 45 | 0.2369 | - | - |
0.0566 | 46 | 0.2268 | - | - |
0.0578 | 47 | 0.2975 | - | - |
0.0590 | 48 | 0.1922 | - | - |
0.0603 | 49 | 0.1906 | - | - |
0.0615 | 50 | 0.2379 | - | - |
0.0627 | 51 | 0.3796 | - | - |
0.0640 | 52 | 0.1821 | - | - |
0.0652 | 53 | 0.1257 | - | - |
0.0664 | 54 | 0.2368 | - | - |
0.0677 | 55 | 0.294 | - | - |
0.0689 | 56 | 0.2594 | - | - |
0.0701 | 57 | 0.2972 | - | - |
0.0713 | 58 | 0.2297 | - | - |
0.0726 | 59 | 0.1487 | - | - |
0.0738 | 60 | 0.182 | - | - |
0.0750 | 61 | 0.2516 | - | - |
0.0763 | 62 | 0.2809 | - | - |
0.0775 | 63 | 0.1371 | 0.1308 | 0.9068 |
0.0787 | 64 | 0.2149 | - | - |
0.0800 | 65 | 0.1806 | - | - |
0.0812 | 66 | 0.1458 | - | - |
0.0824 | 67 | 0.249 | - | - |
0.0836 | 68 | 0.2787 | - | - |
0.0849 | 69 | 0.288 | - | - |
0.0861 | 70 | 0.1461 | - | - |
0.0873 | 71 | 0.2304 | - | - |
0.0886 | 72 | 0.3505 | - | - |
0.0898 | 73 | 0.2227 | - | - |
0.0910 | 74 | 0.1746 | - | - |
0.0923 | 75 | 0.1484 | - | - |
0.0935 | 76 | 0.1346 | - | - |
0.0947 | 77 | 0.2112 | - | - |
0.0959 | 78 | 0.3138 | - | - |
0.0972 | 79 | 0.2675 | - | - |
0.0984 | 80 | 0.2849 | - | - |
0.0996 | 81 | 0.1719 | - | - |
0.1009 | 82 | 0.2749 | - | - |
0.1021 | 83 | 0.3097 | - | - |
0.1033 | 84 | 0.2068 | 0.1260 | 0.9045 |
0.1046 | 85 | 0.22 | - | - |
0.1058 | 86 | 0.2977 | - | - |
0.1070 | 87 | 0.209 | - | - |
0.1082 | 88 | 0.2215 | - | - |
0.1095 | 89 | 0.1948 | - | - |
0.1107 | 90 | 0.2084 | - | - |
0.1119 | 91 | 0.1823 | - | - |
0.1132 | 92 | 0.255 | - | - |
0.1144 | 93 | 0.2675 | - | - |
0.1156 | 94 | 0.18 | - | - |
0.1169 | 95 | 0.2891 | - | - |
0.1181 | 96 | 0.253 | - | - |
0.1193 | 97 | 0.3481 | - | - |
0.1205 | 98 | 0.1688 | - | - |
0.1218 | 99 | 0.1808 | - | - |
0.1230 | 100 | 0.2821 | - | - |
0.1242 | 101 | 0.1856 | - | - |
0.1255 | 102 | 0.1441 | - | - |
0.1267 | 103 | 0.226 | - | - |
0.1279 | 104 | 0.1662 | - | - |
0.1292 | 105 | 0.2043 | 0.1187 | 0.9051 |
0.1304 | 106 | 0.3907 | - | - |
0.1316 | 107 | 0.1332 | - | - |
0.1328 | 108 | 0.2243 | - | - |
0.1341 | 109 | 0.162 | - | - |
0.1353 | 110 | 0.1481 | - | - |
0.1365 | 111 | 0.2163 | - | - |
0.1378 | 112 | 0.24 | - | - |
0.1390 | 113 | 0.1406 | - | - |
0.1402 | 114 | 0.1522 | - | - |
0.1415 | 115 | 0.2593 | - | - |
0.1427 | 116 | 0.2426 | - | - |
0.1439 | 117 | 0.1781 | - | - |
0.1451 | 118 | 0.264 | - | - |
0.1464 | 119 | 0.1944 | - | - |
0.1476 | 120 | 0.1341 | - | - |
0.1488 | 121 | 0.155 | - | - |
0.1501 | 122 | 0.2052 | - | - |
0.1513 | 123 | 0.2023 | - | - |
0.1525 | 124 | 0.1519 | - | - |
0.1538 | 125 | 0.2118 | - | - |
0.1550 | 126 | 0.2489 | 0.1147 | 0.9058 |
0.1562 | 127 | 0.1988 | - | - |
0.1574 | 128 | 0.1541 | - | - |
0.1587 | 129 | 0.1819 | - | - |
0.1599 | 130 | 0.1582 | - | - |
0.1611 | 131 | 0.2866 | - | - |
0.1624 | 132 | 0.2766 | - | - |
0.1636 | 133 | 0.1299 | - | - |
0.1648 | 134 | 0.2558 | - | - |
0.1661 | 135 | 0.1687 | - | - |
0.1673 | 136 | 0.173 | - | - |
0.1685 | 137 | 0.2276 | - | - |
0.1697 | 138 | 0.2174 | - | - |
0.1710 | 139 | 0.2666 | - | - |
0.1722 | 140 | 0.1524 | - | - |
0.1734 | 141 | 0.1179 | - | - |
0.1747 | 142 | 0.2475 | - | - |
0.1759 | 143 | 0.2662 | - | - |
0.1771 | 144 | 0.1596 | - | - |
0.1784 | 145 | 0.2331 | - | - |
0.1796 | 146 | 0.2905 | - | - |
0.1808 | 147 | 0.1342 | 0.1088 | 0.9051 |
0.1820 | 148 | 0.0839 | - | - |
0.1833 | 149 | 0.2055 | - | - |
0.1845 | 150 | 0.2196 | - | - |
0.1857 | 151 | 0.2283 | - | - |
0.1870 | 152 | 0.2105 | - | - |
0.1882 | 153 | 0.1534 | - | - |
0.1894 | 154 | 0.1954 | - | - |
0.1907 | 155 | 0.1332 | - | - |
0.1919 | 156 | 0.19 | - | - |
0.1931 | 157 | 0.1878 | - | - |
0.1943 | 158 | 0.1518 | - | - |
0.1956 | 159 | 0.1906 | - | - |
0.1968 | 160 | 0.155 | - | - |
0.1980 | 161 | 0.1519 | - | - |
0.1993 | 162 | 0.1726 | - | - |
0.2005 | 163 | 0.1618 | - | - |
0.2017 | 164 | 0.2767 | - | - |
0.2030 | 165 | 0.1996 | - | - |
0.2042 | 166 | 0.1907 | - | - |
0.2054 | 167 | 0.1928 | - | - |
0.2066 | 168 | 0.1507 | 0.1082 | 0.9045 |
0.2079 | 169 | 0.1637 | - | - |
0.2091 | 170 | 0.1687 | - | - |
0.2103 | 171 | 0.2181 | - | - |
0.2116 | 172 | 0.1496 | - | - |
0.2128 | 173 | 0.1749 | - | - |
0.2140 | 174 | 0.2374 | - | - |
0.2153 | 175 | 0.2122 | - | - |
0.2165 | 176 | 0.1617 | - | - |
0.2177 | 177 | 0.168 | - | - |
0.2189 | 178 | 0.263 | - | - |
0.2202 | 179 | 0.1328 | - | - |
0.2214 | 180 | 0.3157 | - | - |
0.2226 | 181 | 0.2164 | - | - |
0.2239 | 182 | 0.1255 | - | - |
0.2251 | 183 | 0.2863 | - | - |
0.2263 | 184 | 0.155 | - | - |
0.2276 | 185 | 0.1271 | - | - |
0.2288 | 186 | 0.216 | - | - |
0.2300 | 187 | 0.205 | - | - |
0.2312 | 188 | 0.1575 | - | - |
0.2325 | 189 | 0.1939 | 0.1057 | 0.9046 |
0.2337 | 190 | 0.2209 | - | - |
0.2349 | 191 | 0.153 | - | - |
0.2362 | 192 | 0.2187 | - | - |
0.2374 | 193 | 0.1593 | - | - |
0.2386 | 194 | 0.173 | - | - |
0.2399 | 195 | 0.2377 | - | - |
0.2411 | 196 | 0.2281 | - | - |
0.2423 | 197 | 0.2651 | - | - |
0.2435 | 198 | 0.118 | - | - |
0.2448 | 199 | 0.1728 | - | - |
0.2460 | 200 | 0.2299 | - | - |
0.2472 | 201 | 0.2342 | - | - |
0.2485 | 202 | 0.2413 | - | - |
0.2497 | 203 | 0.168 | - | - |
0.2509 | 204 | 0.1474 | - | - |
0.2522 | 205 | 0.1102 | - | - |
0.2534 | 206 | 0.2326 | - | - |
0.2546 | 207 | 0.1787 | - | - |
0.2558 | 208 | 0.1423 | - | - |
0.2571 | 209 | 0.2069 | - | - |
0.2583 | 210 | 0.136 | 0.1040 | 0.9056 |
0.2595 | 211 | 0.2407 | - | - |
0.2608 | 212 | 0.212 | - | - |
0.2620 | 213 | 0.1361 | - | - |
0.2632 | 214 | 0.2356 | - | - |
0.2645 | 215 | 0.1059 | - | - |
0.2657 | 216 | 0.2501 | - | - |
0.2669 | 217 | 0.1817 | - | - |
0.2681 | 218 | 0.2022 | - | - |
0.2694 | 219 | 0.2235 | - | - |
0.2706 | 220 | 0.2437 | - | - |
0.2718 | 221 | 0.1859 | - | - |
0.2731 | 222 | 0.2167 | - | - |
0.2743 | 223 | 0.1495 | - | - |
0.2755 | 224 | 0.2876 | - | - |
0.2768 | 225 | 0.1842 | - | - |
0.2780 | 226 | 0.144 | - | - |
0.2792 | 227 | 0.1571 | - | - |
0.2804 | 228 | 0.209 | - | - |
0.2817 | 229 | 0.2075 | - | - |
0.2829 | 230 | 0.1722 | - | - |
0.2841 | 231 | 0.1464 | 0.1039 | 0.9087 |
0.2854 | 232 | 0.2675 | - | - |
0.2866 | 233 | 0.2585 | - | - |
0.2878 | 234 | 0.134 | - | - |
0.2891 | 235 | 0.1765 | - | - |
0.2903 | 236 | 0.1826 | - | - |
0.2915 | 237 | 0.222 | - | - |
0.2927 | 238 | 0.134 | - | - |
0.2940 | 239 | 0.1902 | - | - |
0.2952 | 240 | 0.2461 | - | - |
0.2964 | 241 | 0.3094 | - | - |
0.2977 | 242 | 0.2252 | - | - |
0.2989 | 243 | 0.2466 | - | - |
0.3001 | 244 | 0.139 | - | - |
0.3014 | 245 | 0.154 | - | - |
0.3026 | 246 | 0.1979 | - | - |
0.3038 | 247 | 0.1121 | - | - |
0.3050 | 248 | 0.1361 | - | - |
0.3063 | 249 | 0.2492 | - | - |
0.3075 | 250 | 0.1903 | - | - |
0.3087 | 251 | 0.2333 | - | - |
0.3100 | 252 | 0.1805 | 0.1030 | 0.9099 |
0.3112 | 253 | 0.1929 | - | - |
0.3124 | 254 | 0.1424 | - | - |
0.3137 | 255 | 0.2318 | - | - |
0.3149 | 256 | 0.1524 | - | - |
0.3161 | 257 | 0.2195 | - | - |
0.3173 | 258 | 0.1338 | - | - |
0.3186 | 259 | 0.2543 | - | - |
0.3198 | 260 | 0.202 | - | - |
0.3210 | 261 | 0.1489 | - | - |
0.3223 | 262 | 0.1937 | - | - |
0.3235 | 263 | 0.2334 | - | - |
0.3247 | 264 | 0.1942 | - | - |
0.3260 | 265 | 0.2013 | - | - |
0.3272 | 266 | 0.2954 | - | - |
0.3284 | 267 | 0.188 | - | - |
0.3296 | 268 | 0.1688 | - | - |
0.3309 | 269 | 0.1415 | - | - |
0.3321 | 270 | 0.2249 | - | - |
0.3333 | 271 | 0.2606 | - | - |
0.3346 | 272 | 0.2559 | - | - |
0.3358 | 273 | 0.2673 | 0.1039 | 0.9078 |
0.3370 | 274 | 0.1618 | - | - |
0.3383 | 275 | 0.2602 | - | - |
0.3395 | 276 | 0.2339 | - | - |
0.3407 | 277 | 0.1843 | - | - |
0.3419 | 278 | 0.133 | - | - |
0.3432 | 279 | 0.2345 | - | - |
0.3444 | 280 | 0.2808 | - | - |
0.3456 | 281 | 0.1044 | - | - |
0.3469 | 282 | 0.1622 | - | - |
0.3481 | 283 | 0.1303 | - | - |
0.3493 | 284 | 0.1453 | - | - |
0.3506 | 285 | 0.237 | - | - |
0.3518 | 286 | 0.1726 | - | - |
0.3530 | 287 | 0.2195 | - | - |
0.3542 | 288 | 0.3016 | - | - |
0.3555 | 289 | 0.1626 | - | - |
0.3567 | 290 | 0.1902 | - | - |
0.3579 | 291 | 0.1387 | - | - |
0.3592 | 292 | 0.1047 | - | - |
0.3604 | 293 | 0.1954 | - | - |
0.3616 | 294 | 0.2089 | 0.1029 | 0.9083 |
0.3629 | 295 | 0.1485 | - | - |
0.3641 | 296 | 0.1724 | - | - |
0.3653 | 297 | 0.2017 | - | - |
0.3665 | 298 | 0.1591 | - | - |
0.3678 | 299 | 0.2396 | - | - |
0.3690 | 300 | 0.1395 | - | - |
0.3702 | 301 | 0.1806 | - | - |
0.3715 | 302 | 0.1882 | - | - |
0.3727 | 303 | 0.1188 | - | - |
0.3739 | 304 | 0.1564 | - | - |
0.3752 | 305 | 0.313 | - | - |
0.3764 | 306 | 0.1455 | - | - |
0.3776 | 307 | 0.1535 | - | - |
0.3788 | 308 | 0.099 | - | - |
0.3801 | 309 | 0.1733 | - | - |
0.3813 | 310 | 0.1891 | - | - |
0.3825 | 311 | 0.2128 | - | - |
0.3838 | 312 | 0.2042 | - | - |
0.3850 | 313 | 0.203 | - | - |
0.3862 | 314 | 0.2249 | - | - |
0.3875 | 315 | 0.1597 | 0.1014 | 0.9074 |
0.3887 | 316 | 0.1358 | - | - |
0.3899 | 317 | 0.207 | - | - |
0.3911 | 318 | 0.193 | - | - |
0.3924 | 319 | 0.1141 | - | - |
0.3936 | 320 | 0.2835 | - | - |
0.3948 | 321 | 0.2589 | - | - |
0.3961 | 322 | 0.088 | - | - |
0.3973 | 323 | 0.1675 | - | - |
0.3985 | 324 | 0.1525 | - | - |
0.3998 | 325 | 0.1401 | - | - |
0.4010 | 326 | 0.2109 | - | - |
0.4022 | 327 | 0.1382 | - | - |
0.4034 | 328 | 0.1724 | - | - |
0.4047 | 329 | 0.1668 | - | - |
0.4059 | 330 | 0.1606 | - | - |
0.4071 | 331 | 0.2102 | - | - |
0.4084 | 332 | 0.1737 | - | - |
0.4096 | 333 | 0.1641 | - | - |
0.4108 | 334 | 0.1984 | - | - |
0.4121 | 335 | 0.1395 | - | - |
0.4133 | 336 | 0.1236 | 0.1008 | 0.9066 |
0.4145 | 337 | 0.1405 | - | - |
0.4157 | 338 | 0.1461 | - | - |
0.4170 | 339 | 0.1151 | - | - |
0.4182 | 340 | 0.1282 | - | - |
0.4194 | 341 | 0.2155 | - | - |
0.4207 | 342 | 0.1344 | - | - |
0.4219 | 343 | 0.1854 | - | - |
0.4231 | 344 | 0.1766 | - | - |
0.4244 | 345 | 0.122 | - | - |
0.4256 | 346 | 0.142 | - | - |
0.4268 | 347 | 0.1434 | - | - |
0.4280 | 348 | 0.1687 | - | - |
0.4293 | 349 | 0.1751 | - | - |
0.4305 | 350 | 0.1253 | - | - |
0.4317 | 351 | 0.1387 | - | - |
0.4330 | 352 | 0.181 | - | - |
0.4342 | 353 | 0.101 | - | - |
0.4354 | 354 | 0.1552 | - | - |
0.4367 | 355 | 0.2676 | - | - |
0.4379 | 356 | 0.1638 | - | - |
0.4391 | 357 | 0.19 | 0.1008 | 0.9072 |
0.4403 | 358 | 0.1152 | - | - |
0.4416 | 359 | 0.1639 | - | - |
0.4428 | 360 | 0.1624 | - | - |
0.4440 | 361 | 0.203 | - | - |
0.4453 | 362 | 0.1856 | - | - |
0.4465 | 363 | 0.1978 | - | - |
0.4477 | 364 | 0.1457 | - | - |
0.4490 | 365 | 0.176 | - | - |
0.4502 | 366 | 0.1742 | - | - |
0.4514 | 367 | 0.1599 | - | - |
0.4526 | 368 | 0.2085 | - | - |
0.4539 | 369 | 0.2255 | - | - |
0.4551 | 370 | 0.1941 | - | - |
0.4563 | 371 | 0.0769 | - | - |
0.4576 | 372 | 0.2031 | - | - |
0.4588 | 373 | 0.2151 | - | - |
0.4600 | 374 | 0.2115 | - | - |
0.4613 | 375 | 0.1241 | - | - |
0.4625 | 376 | 0.1693 | - | - |
0.4637 | 377 | 0.2086 | - | - |
0.4649 | 378 | 0.1661 | 0.1004 | 0.9074 |
0.4662 | 379 | 0.1508 | - | - |
0.4674 | 380 | 0.1802 | - | - |
0.4686 | 381 | 0.1005 | - | - |
0.4699 | 382 | 0.1948 | - | - |
0.4711 | 383 | 0.1618 | - | - |
0.4723 | 384 | 0.216 | - | - |
0.4736 | 385 | 0.132 | - | - |
0.4748 | 386 | 0.2461 | - | - |
0.4760 | 387 | 0.1825 | - | - |
0.4772 | 388 | 0.1912 | - | - |
0.4785 | 389 | 0.1706 | - | - |
0.4797 | 390 | 0.2599 | - | - |
0.4809 | 391 | 0.1837 | - | - |
0.4822 | 392 | 0.23 | - | - |
0.4834 | 393 | 0.1523 | - | - |
0.4846 | 394 | 0.1105 | - | - |
0.4859 | 395 | 0.1478 | - | - |
0.4871 | 396 | 0.2184 | - | - |
0.4883 | 397 | 0.1977 | - | - |
0.4895 | 398 | 0.1607 | - | - |
0.4908 | 399 | 0.2183 | 0.1002 | 0.9077 |
0.4920 | 400 | 0.1155 | - | - |
0.4932 | 401 | 0.2395 | - | - |
0.4945 | 402 | 0.1194 | - | - |
0.4957 | 403 | 0.1567 | - | - |
0.4969 | 404 | 0.1037 | - | - |
0.4982 | 405 | 0.2713 | - | - |
0.4994 | 406 | 0.1742 | - | - |
0.5006 | 407 | 0.221 | - | - |
0.5018 | 408 | 0.1412 | - | - |
0.5031 | 409 | 0.1482 | - | - |
0.5043 | 410 | 0.1347 | - | - |
0.5055 | 411 | 0.2345 | - | - |
0.5068 | 412 | 0.1231 | - | - |
0.5080 | 413 | 0.1418 | - | - |
0.5092 | 414 | 0.152 | - | - |
0.5105 | 415 | 0.1878 | - | - |
0.5117 | 416 | 0.1683 | - | - |
0.5129 | 417 | 0.1501 | - | - |
0.5141 | 418 | 0.2589 | - | - |
0.5154 | 419 | 0.1924 | - | - |
0.5166 | 420 | 0.1166 | 0.0979 | 0.9078 |
0.5178 | 421 | 0.1509 | - | - |
0.5191 | 422 | 0.1457 | - | - |
0.5203 | 423 | 0.2244 | - | - |
0.5215 | 424 | 0.1837 | - | - |
0.5228 | 425 | 0.2649 | - | - |
0.5240 | 426 | 0.1295 | - | - |
0.5252 | 427 | 0.1776 | - | - |
0.5264 | 428 | 0.1949 | - | - |
0.5277 | 429 | 0.1262 | - | - |
0.5289 | 430 | 0.1502 | - | - |
0.5301 | 431 | 0.1927 | - | - |
0.5314 | 432 | 0.2161 | - | - |
0.5326 | 433 | 0.2082 | - | - |
0.5338 | 434 | 0.2171 | - | - |
0.5351 | 435 | 0.209 | - | - |
0.5363 | 436 | 0.1841 | - | - |
0.5375 | 437 | 0.1522 | - | - |
0.5387 | 438 | 0.1644 | - | - |
0.5400 | 439 | 0.1784 | - | - |
0.5412 | 440 | 0.2041 | - | - |
0.5424 | 441 | 0.1564 | 0.0968 | 0.9058 |
0.5437 | 442 | 0.2151 | - | - |
0.5449 | 443 | 0.1797 | - | - |
0.5461 | 444 | 0.1652 | - | - |
0.5474 | 445 | 0.1561 | - | - |
0.5486 | 446 | 0.1063 | - | - |
0.5498 | 447 | 0.1584 | - | - |
0.5510 | 448 | 0.2396 | - | - |
0.5523 | 449 | 0.1952 | - | - |
0.5535 | 450 | 0.1598 | - | - |
0.5547 | 451 | 0.2093 | - | - |
0.5560 | 452 | 0.1585 | - | - |
0.5572 | 453 | 0.2311 | - | - |
0.5584 | 454 | 0.1048 | - | - |
0.5597 | 455 | 0.1571 | - | - |
0.5609 | 456 | 0.1915 | - | - |
0.5621 | 457 | 0.1625 | - | - |
0.5633 | 458 | 0.1613 | - | - |
0.5646 | 459 | 0.1845 | - | - |
0.5658 | 460 | 0.2134 | - | - |
0.5670 | 461 | 0.2059 | - | - |
0.5683 | 462 | 0.1974 | 0.0947 | 0.9067 |
0.5695 | 463 | 0.1624 | - | - |
0.5707 | 464 | 0.2005 | - | - |
0.5720 | 465 | 0.1407 | - | - |
0.5732 | 466 | 0.1175 | - | - |
0.5744 | 467 | 0.1888 | - | - |
0.5756 | 468 | 0.1423 | - | - |
0.5769 | 469 | 0.1195 | - | - |
0.5781 | 470 | 0.1525 | - | - |
0.5793 | 471 | 0.2155 | - | - |
0.5806 | 472 | 0.2048 | - | - |
0.5818 | 473 | 0.2386 | - | - |
0.5830 | 474 | 0.162 | - | - |
0.5843 | 475 | 0.1735 | - | - |
0.5855 | 476 | 0.2067 | - | - |
0.5867 | 477 | 0.1395 | - | - |
0.5879 | 478 | 0.1482 | - | - |
0.5892 | 479 | 0.2399 | - | - |
0.5904 | 480 | 0.1849 | - | - |
0.5916 | 481 | 0.139 | - | - |
0.5929 | 482 | 0.2089 | - | - |
0.5941 | 483 | 0.2066 | 0.0934 | 0.9072 |
0.5953 | 484 | 0.2293 | - | - |
0.5966 | 485 | 0.1919 | - | - |
0.5978 | 486 | 0.1168 | - | - |
0.5990 | 487 | 0.2057 | - | - |
0.6002 | 488 | 0.1866 | - | - |
0.6015 | 489 | 0.2277 | - | - |
0.6027 | 490 | 0.1527 | - | - |
0.6039 | 491 | 0.275 | - | - |
0.6052 | 492 | 0.1212 | - | - |
0.6064 | 493 | 0.1384 | - | - |
0.6076 | 494 | 0.1611 | - | - |
0.6089 | 495 | 0.145 | - | - |
0.6101 | 496 | 0.1996 | - | - |
0.6113 | 497 | 0.3 | - | - |
0.6125 | 498 | 0.1117 | - | - |
0.6138 | 499 | 0.1905 | - | - |
0.6150 | 500 | 0.2221 | - | - |
0.6162 | 501 | 0.1749 | - | - |
0.6175 | 502 | 0.1533 | - | - |
0.6187 | 503 | 0.2268 | - | - |
0.6199 | 504 | 0.1879 | 0.0936 | 0.9066 |
0.6212 | 505 | 0.2956 | - | - |
0.6224 | 506 | 0.1566 | - | - |
0.6236 | 507 | 0.1612 | - | - |
0.6248 | 508 | 0.2312 | - | - |
0.6261 | 509 | 0.181 | - | - |
0.6273 | 510 | 0.235 | - | - |
0.6285 | 511 | 0.1376 | - | - |
0.6298 | 512 | 0.1066 | - | - |
0.6310 | 513 | 0.2235 | - | - |
0.6322 | 514 | 0.2549 | - | - |
0.6335 | 515 | 0.2676 | - | - |
0.6347 | 516 | 0.1652 | - | - |
0.6359 | 517 | 0.1573 | - | - |
0.6371 | 518 | 0.2106 | - | - |
0.6384 | 519 | 0.151 | - | - |
0.6396 | 520 | 0.1491 | - | - |
0.6408 | 521 | 0.2612 | - | - |
0.6421 | 522 | 0.1287 | - | - |
0.6433 | 523 | 0.2084 | - | - |
0.6445 | 524 | 0.1545 | - | - |
0.6458 | 525 | 0.1946 | 0.0931 | 0.9061 |
0.6470 | 526 | 0.1684 | - | - |
0.6482 | 527 | 0.1974 | - | - |
0.6494 | 528 | 0.2448 | - | - |
0.6507 | 529 | 0.2255 | - | - |
0.6519 | 530 | 0.2157 | - | - |
0.6531 | 531 | 0.1948 | - | - |
0.6544 | 532 | 0.1418 | - | - |
0.6556 | 533 | 0.1683 | - | - |
0.6568 | 534 | 0.193 | - | - |
0.6581 | 535 | 0.2341 | - | - |
0.6593 | 536 | 0.131 | - | - |
0.6605 | 537 | 0.1733 | - | - |
0.6617 | 538 | 0.1489 | - | - |
0.6630 | 539 | 0.1918 | - | - |
0.6642 | 540 | 0.1953 | - | - |
0.6654 | 541 | 0.1421 | - | - |
0.6667 | 542 | 0.2214 | - | - |
0.6679 | 543 | 0.2152 | - | - |
0.6691 | 544 | 0.209 | - | - |
0.6704 | 545 | 0.1735 | - | - |
0.6716 | 546 | 0.2048 | 0.0918 | 0.9060 |
0.6728 | 547 | 0.1721 | - | - |
0.6740 | 548 | 0.1838 | - | - |
0.6753 | 549 | 0.1614 | - | - |
0.6765 | 550 | 0.1999 | - | - |
0.6777 | 551 | 0.0984 | - | - |
0.6790 | 552 | 0.1351 | - | - |
0.6802 | 553 | 0.1886 | - | - |
0.6814 | 554 | 0.1148 | - | - |
0.6827 | 555 | 0.1766 | - | - |
0.6839 | 556 | 0.19 | - | - |
0.6851 | 557 | 0.2082 | - | - |
0.6863 | 558 | 0.222 | - | - |
0.6876 | 559 | 0.2032 | - | - |
0.6888 | 560 | 0.1854 | - | - |
0.6900 | 561 | 0.1473 | - | - |
0.6913 | 562 | 0.2003 | - | - |
0.6925 | 563 | 0.1223 | - | - |
0.6937 | 564 | 0.2319 | - | - |
0.6950 | 565 | 0.0761 | - | - |
0.6962 | 566 | 0.2835 | - | - |
0.6974 | 567 | 0.2331 | 0.0920 | 0.9061 |
0.6986 | 568 | 0.1698 | - | - |
0.6999 | 569 | 0.203 | - | - |
0.7011 | 570 | 0.2344 | - | - |
0.7023 | 571 | 0.1823 | - | - |
0.7036 | 572 | 0.2043 | - | - |
0.7048 | 573 | 0.1881 | - | - |
0.7060 | 574 | 0.1599 | - | - |
0.7073 | 575 | 0.0829 | - | - |
0.7085 | 576 | 0.1816 | - | - |
0.7097 | 577 | 0.1801 | - | - |
0.7109 | 578 | 0.1707 | - | - |
0.7122 | 579 | 0.2306 | - | - |
0.7134 | 580 | 0.1503 | - | - |
0.7146 | 581 | 0.1779 | - | - |
0.7159 | 582 | 0.1422 | - | - |
0.7171 | 583 | 0.1358 | - | - |
0.7183 | 584 | 0.0978 | - | - |
0.7196 | 585 | 0.1713 | - | - |
0.7208 | 586 | 0.1771 | - | - |
0.7220 | 587 | 0.1241 | - | - |
0.7232 | 588 | 0.1267 | 0.0918 | 0.9064 |
0.7245 | 589 | 0.1126 | - | - |
0.7257 | 590 | 0.0858 | - | - |
0.7269 | 591 | 0.1335 | - | - |
0.7282 | 592 | 0.1958 | - | - |
0.7294 | 593 | 0.1448 | - | - |
0.7306 | 594 | 0.2679 | - | - |
0.7319 | 595 | 0.153 | - | - |
0.7331 | 596 | 0.1523 | - | - |
0.7343 | 597 | 0.1988 | - | - |
0.7355 | 598 | 0.157 | - | - |
0.7368 | 599 | 0.146 | - | - |
0.7380 | 600 | 0.2043 | - | - |
0.7392 | 601 | 0.1508 | - | - |
0.7405 | 602 | 0.1946 | - | - |
0.7417 | 603 | 0.1481 | - | - |
0.7429 | 604 | 0.0995 | - | - |
0.7442 | 605 | 0.149 | - | - |
0.7454 | 606 | 0.1686 | - | - |
0.7466 | 607 | 0.1555 | - | - |
0.7478 | 608 | 0.1662 | - | - |
0.7491 | 609 | 0.1217 | 0.0917 | 0.9064 |
0.7503 | 610 | 0.0748 | - | - |
0.7515 | 611 | 0.1723 | - | - |
0.7528 | 612 | 0.2354 | - | - |
0.7540 | 613 | 0.1315 | - | - |
0.7552 | 614 | 0.2913 | - | - |
0.7565 | 615 | 0.0991 | - | - |
0.7577 | 616 | 0.1052 | - | - |
0.7589 | 617 | 0.1496 | - | - |
0.7601 | 618 | 0.1399 | - | - |
0.7614 | 619 | 0.1329 | - | - |
0.7626 | 620 | 0.2287 | - | - |
0.7638 | 621 | 0.1085 | - | - |
0.7651 | 622 | 0.1864 | - | - |
0.7663 | 623 | 0.1577 | - | - |
0.7675 | 624 | 0.143 | - | - |
0.7688 | 625 | 0.1886 | - | - |
0.7700 | 626 | 0.1683 | - | - |
0.7712 | 627 | 0.212 | - | - |
0.7724 | 628 | 0.1643 | - | - |
0.7737 | 629 | 0.1632 | - | - |
0.7749 | 630 | 0.1384 | 0.0925 | 0.9054 |
0.7761 | 631 | 0.2133 | - | - |
0.7774 | 632 | 0.1732 | - | - |
0.7786 | 633 | 0.1218 | - | - |
0.7798 | 634 | 0.1581 | - | - |
0.7811 | 635 | 0.1337 | - | - |
0.7823 | 636 | 0.1859 | - | - |
0.7835 | 637 | 0.1616 | - | - |
0.7847 | 638 | 0.1799 | - | - |
0.7860 | 639 | 0.1193 | - | - |
0.7872 | 640 | 0.1471 | - | - |
0.7884 | 641 | 0.1235 | - | - |
0.7897 | 642 | 0.1221 | - | - |
0.7909 | 643 | 0.1379 | - | - |
0.7921 | 644 | 0.238 | - | - |
0.7934 | 645 | 0.1671 | - | - |
0.7946 | 646 | 0.1652 | - | - |
0.7958 | 647 | 0.1828 | - | - |
0.7970 | 648 | 0.2207 | - | - |
0.7983 | 649 | 0.2109 | - | - |
0.7995 | 650 | 0.1105 | - | - |
0.8007 | 651 | 0.129 | 0.0933 | 0.9069 |
0.8020 | 652 | 0.1633 | - | - |
0.8032 | 653 | 0.201 | - | - |
0.8044 | 654 | 0.1041 | - | - |
0.8057 | 655 | 0.1838 | - | - |
0.8069 | 656 | 0.3044 | - | - |
0.8081 | 657 | 0.1736 | - | - |
0.8093 | 658 | 0.1909 | - | - |
0.8106 | 659 | 0.1413 | - | - |
0.8118 | 660 | 0.1138 | - | - |
0.8130 | 661 | 0.1163 | - | - |
0.8143 | 662 | 0.1725 | - | - |
0.8155 | 663 | 0.2248 | - | - |
0.8167 | 664 | 0.1019 | - | - |
0.8180 | 665 | 0.1138 | - | - |
0.8192 | 666 | 0.1652 | - | - |
0.8204 | 667 | 0.1361 | - | - |
0.8216 | 668 | 0.1769 | - | - |
0.8229 | 669 | 0.1241 | - | - |
0.8241 | 670 | 0.1683 | - | - |
0.8253 | 671 | 0.1315 | - | - |
0.8266 | 672 | 0.1046 | 0.0940 | 0.9055 |
0.8278 | 673 | 0.1984 | - | - |
0.8290 | 674 | 0.1766 | - | - |
0.8303 | 675 | 0.1245 | - | - |
0.8315 | 676 | 0.1953 | - | - |
0.8327 | 677 | 0.1506 | - | - |
0.8339 | 678 | 0.1145 | - | - |
0.8352 | 679 | 0.1366 | - | - |
0.8364 | 680 | 0.1071 | - | - |
0.8376 | 681 | 0.2142 | - | - |
0.8389 | 682 | 0.2029 | - | - |
0.8401 | 683 | 0.1171 | - | - |
0.8413 | 684 | 0.176 | - | - |
0.8426 | 685 | 0.1052 | - | - |
0.8438 | 686 | 0.1892 | - | - |
0.8450 | 687 | 0.1499 | - | - |
0.8462 | 688 | 0.1414 | - | - |
0.8475 | 689 | 0.1193 | - | - |
0.8487 | 690 | 0.1516 | - | - |
0.8499 | 691 | 0.1552 | - | - |
0.8512 | 692 | 0.1168 | - | - |
0.8524 | 693 | 0.2326 | 0.0932 | 0.9071 |
0.8536 | 694 | 0.2112 | - | - |
0.8549 | 695 | 0.0835 | - | - |
0.8561 | 696 | 0.1512 | - | - |
0.8573 | 697 | 0.1379 | - | - |
0.8585 | 698 | 0.1045 | - | - |
0.8598 | 699 | 0.2045 | - | - |
0.8610 | 700 | 0.1909 | - | - |
0.8622 | 701 | 0.1895 | - | - |
0.8635 | 702 | 0.2077 | - | - |
0.8647 | 703 | 0.1199 | - | - |
0.8659 | 704 | 0.1606 | - | - |
0.8672 | 705 | 0.1501 | - | - |
0.8684 | 706 | 0.1711 | - | - |
0.8696 | 707 | 0.222 | - | - |
0.8708 | 708 | 0.1414 | - | - |
0.8721 | 709 | 0.1972 | - | - |
0.8733 | 710 | 0.1074 | - | - |
0.8745 | 711 | 0.2044 | - | - |
0.8758 | 712 | 0.0997 | - | - |
0.8770 | 713 | 0.1178 | - | - |
0.8782 | 714 | 0.1376 | 0.0929 | 0.9058 |
0.8795 | 715 | 0.1302 | - | - |
0.8807 | 716 | 0.1252 | - | - |
0.8819 | 717 | 0.2365 | - | - |
0.8831 | 718 | 0.1405 | - | - |
0.8844 | 719 | 0.1806 | - | - |
0.8856 | 720 | 0.1495 | - | - |
0.8868 | 721 | 0.1987 | - | - |
0.8881 | 722 | 0.096 | - | - |
0.8893 | 723 | 0.1728 | - | - |
0.8905 | 724 | 0.2104 | - | - |
0.8918 | 725 | 0.1562 | - | - |
0.8930 | 726 | 0.1358 | - | - |
0.8942 | 727 | 0.1723 | - | - |
0.8954 | 728 | 0.1947 | - | - |
0.8967 | 729 | 0.1572 | - | - |
0.8979 | 730 | 0.1124 | - | - |
0.8991 | 731 | 0.2272 | - | - |
0.9004 | 732 | 0.1356 | - | - |
0.9016 | 733 | 0.1816 | - | - |
0.9028 | 734 | 0.1011 | - | - |
0.9041 | 735 | 0.124 | 0.0911 | 0.9051 |
0.9053 | 736 | 0.1873 | - | - |
0.9065 | 737 | 0.0702 | - | - |
0.9077 | 738 | 0.15 | - | - |
0.9090 | 739 | 0.221 | - | - |
0.9102 | 740 | 0.1511 | - | - |
0.9114 | 741 | 0.195 | - | - |
0.9127 | 742 | 0.1473 | - | - |
0.9139 | 743 | 0.1311 | - | - |
0.9151 | 744 | 0.1869 | - | - |
0.9164 | 745 | 0.1433 | - | - |
0.9176 | 746 | 0.1286 | - | - |
0.9188 | 747 | 0.1316 | - | - |
0.9200 | 748 | 0.1669 | - | - |
0.9213 | 749 | 0.1691 | - | - |
0.9225 | 750 | 0.1853 | - | - |
0.9237 | 751 | 0.1813 | - | - |
0.9250 | 752 | 0.1754 | - | - |
0.9262 | 753 | 0.2282 | - | - |
0.9274 | 754 | 0.1248 | - | - |
0.9287 | 755 | 0.1182 | - | - |
0.9299 | 756 | 0.1601 | 0.0903 | 0.9059 |
0.9311 | 757 | 0.2377 | - | - |
0.9323 | 758 | 0.1799 | - | - |
0.9336 | 759 | 0.2016 | - | - |
0.9348 | 760 | 0.1293 | - | - |
0.9360 | 761 | 0.2038 | - | - |
0.9373 | 762 | 0.1384 | - | - |
0.9385 | 763 | 0.1856 | - | - |
0.9397 | 764 | 0.2775 | - | - |
0.9410 | 765 | 0.1651 | - | - |
0.9422 | 766 | 0.2072 | - | - |
0.9434 | 767 | 0.1459 | - | - |
0.9446 | 768 | 0.1277 | - | - |
0.9459 | 769 | 0.1742 | - | - |
0.9471 | 770 | 0.1978 | - | - |
0.9483 | 771 | 0.1992 | - | - |
0.9496 | 772 | 0.1649 | - | - |
0.9508 | 773 | 0.2195 | - | - |
0.9520 | 774 | 0.1348 | - | - |
0.9533 | 775 | 0.1556 | - | - |
0.9545 | 776 | 0.2293 | - | - |
0.9557 | 777 | 0.1585 | 0.0904 | 0.9062 |
0.9569 | 778 | 0.1029 | - | - |
0.9582 | 779 | 0.1027 | - | - |
0.9594 | 780 | 0.1165 | - | - |
0.9606 | 781 | 0.1654 | - | - |
0.9619 | 782 | 0.1706 | - | - |
0.9631 | 783 | 0.102 | - | - |
0.9643 | 784 | 0.1697 | - | - |
0.9656 | 785 | 0.177 | - | - |
0.9668 | 786 | 0.1718 | - | - |
0.9680 | 787 | 0.1542 | - | - |
0.9692 | 788 | 0.1654 | - | - |
0.9705 | 789 | 0.1672 | - | - |
0.9717 | 790 | 0.1867 | - | - |
0.9729 | 791 | 0.1717 | - | - |
0.9742 | 792 | 0.1701 | - | - |
0.9754 | 793 | 0.1542 | - | - |
0.9766 | 794 | 0.2153 | - | - |
0.9779 | 795 | 0.131 | - | - |
0.9791 | 796 | 0.1448 | - | - |
0.9803 | 797 | 0.1171 | - | - |
0.9815 | 798 | 0.1585 | 0.0904 | 0.9063 |
0.9828 | 799 | 0.1352 | - | - |
0.9840 | 800 | 0.1146 | - | - |
0.9852 | 801 | 0.1366 | - | - |
0.9865 | 802 | 0.1375 | - | - |
0.9877 | 803 | 0.1588 | - | - |
0.9889 | 804 | 0.1429 | - | - |
0.9902 | 805 | 0.1541 | - | - |
0.9914 | 806 | 0.1171 | - | - |
0.9926 | 807 | 0.1352 | - | - |
0.9938 | 808 | 0.1948 | - | - |
0.9951 | 809 | 0.1628 | - | - |
0.9963 | 810 | 0.1115 | - | - |
0.9975 | 811 | 0.0929 | - | - |
0.9988 | 812 | 0.0955 | - | - |
1.0 | 813 | 0.0 | 0.0904 | 0.9063 |
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.44.0
- PyTorch: 2.4.0
- Accelerate: 0.33.0
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}